

Review

Available online at ScienceDirect

Elsevier Masson France

EM consulte www.em-consulte.com

Metabolic and endocrine adverse effects of second-generation antipsychotics in children and adolescents: A systematic review of randomized, placebo controlled trials and guidelines for clinical practice

M. De Hert^{a,*}, M. Dobbelaere^b, E.M. Sheridan^c, D. Cohen^{d,e}, C.U. Correll^{c,f}

^a Centre Catholic University Leuven, campus Kortenberg, Leuvensesteenweg 517, 3070 Kortenberg, Belgium

^b Psychiatric Centre Catholic, University Leuven, campus Gasthuisberg, Gasthuisberg, Belgium

^c The Zucker Hillside Hospital, Glen Oaks, New York, USA

^d Department of Epidemiology, University Medical Centre Groningen, University of Groningen, Netherlands

^e Division Chronic Care, Noord-Holland-Noord, GGZ-NHN, Heerhugowaard, Netherlands

^fAlbert Einstein College of Medicine, Bronx, New York, USA

ARTICLE INFO

Article history: Received 19 July 2010 Received in revised form 27 September 2010 Accepted 28 September 2010 Available online 3 February 2011

Keywords: Adolescents Antipsychotics Cardiovascular disease Children Diabetes Guidelines Management Monitoring Side-effects Weight gain

ABSTRACT

Second-generation antipsychotics (SGA) are being used more often than ever before in children and adolescents with psychotic and a wide range of non-psychotic disorders. Several SGA have received regulatory approval for some paediatric indications in various countries, but off-label use is still frequent. The aim of this paper was to perform a systematic review and critically evaluate the literature on cardiometabolic and endocrine side-effects of SGA in children and adolescents through a Medline/ Pubmed/Google Scholar search of randomized, placebo controlled trials of antipsychotics in children and adolescents (<18 years old) until February 2010. In total, 31 randomized, controlled studies including 3595 paediatric patients were identified. A review of these data confirmed that SGA are associated with relevant cardiometabolic and endocrine side-effects, and that children and adolescents have a high liability to experience antipsychotic induced hyperprolactinaemia, weight gain and associated metabolic disturbances. Only weight change data were sufficiently reported to conduct a formal meta-analysis. In 24 trials of 3048 paediatric patients with varying ages and diagnoses, ziprasidone was associated with the lowest weight gain (-0.04 kg, 95% confidence interval [CI]: -0.38 to +0.30), followed by aripiprazole (0.79 kg, 95% CI: 0.54 to 1.04], quetiapine (1.43 kg, 95% CI: 1.17 to 1.69) and risperidone (1.76 kg, 95% CI: 1.27 to 2.25) were intermediate, and olanzapine was associated with weight gain the most (3.45 kg, 95% CI: 2.93 to 3.97). Significant weight gain appeared to be more prevalent in patients with autistic disorder who were also younger and likely less exposed to antipsychotics previously. These data clearly suggest that close screening and monitoring of metabolic side effects is warranted and that the least cardiometabolically problematic agents should be used first whenever possible. A good collaboration between child- and adolescent psychiatrists, general practitioners and paediatricians is essential to maximize overall outcomes and to reduce the likelihood of premature cardiovascular morbidity and mortality.

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Second-generation antipsychotics (SGA) have a long history of being used in adults, and their use in youth is growing rapidly for the treatment of different child and adolescent psychiatric disorders [101,102,105,108,109] (Table 1). In recent years, risperidone use increased in children and adolescents (6–18 years) in Belgium, reaching in 2007 and 2008 the 6th and 10th places, respectively, in expenditure for prescription drugs in boys aged

* Corresponding author. Tel.: +32 2 758 05 11.

E-mail address: marc.de.hert@uc-kortenberg.be (M. De Hert).

13–18 years [38]. The increased use of psychotropic medications in adolescents has raised concern and controversy.

SGAs are often prescribed off-label for the treatment of disorders associated with aggressive and disruptive behaviours in pervasive developmental disorders (autistic disorder, Rett's syndrome, childhood disintegrative disorder, Asperger's disorder, pervasive developmental disorder not otherwise specified), disruptive behaviour disorders (e.g. conduct disorder, oppositional-defiant disorder), eating disorders, mental retardation, severe attention deficit hyperactivity disorder, tic disorders like Tourette's disorder, schizophrenia and other psychotic disorders, bipolar spectrum disorders and obsessive-compulsive disorder [17,39,67, 70,79].

^{0924-9338/\$ -} see front matter © 2010 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.eurpsy.2010.09.011

Table 1Atypical antipsychotics.

Atypical antipsychotics	Indication in patients < 18 years
Amisulpiride (Solian [®])	None
Aripiprazole (Abilify [®])	Schizophrenia (Eur, US), bipolar disorder and irritability in autism (US)
Asenapine (Saphris [®])	None
Clozapine (Leponex [®])	None
lloperidone (Fanapt [®])	None
Olanzapine (Zyprexa [®])	Schizophrenia; bipolar disorder (US)
Paliperidone (Invega [®])	None
Quetiapine (Seroquel [®])	Schizophrenia; bipolar disorder (US)
Risperidone (Risperdal [®])	Severe disruptive disorder (Eur), schizophrenia, bipolar disorder, irritability in autism (US)
Sertindole (Serdolect [®])	None
Ziprasidone (Geodon [®])	None

Eur: Europe; US: United States.

In the United States, the Food and Drug Administration (FDA; www.fda.gov) approved aripiprazole, olanzapine, quetiapine and risperidone for use in adolescents with schizophrenia (age 13-17 years) and for children and adolescents aged 10-17 years old (except for olanzapine: age 13-17 years old) with bipolar I disorder, manic or mixed episode. In addition, risperidone (age 5-17 years) and aripiprazole (aged 6-17 years) are approved for the treatment of irritability and aggression in youth with autistic disorder [82,85,94,104]. Furthermore, the FDA scientific advisory group voted to approve the use of ziprasidone for the treatment of children and adolescents with bipolar I mania (age 10-17). Across all European Union countries, aripiprazole is currently the only licensed antipsychotic, with an indication for the treatment of schizophrenia in adolescents aged 15-17 years. In isolated European countries, including Belgium, risperidone is approved for the treatment of children and adolescents with severe disruptive disorders [46,63]. Recently, SGA are being used increasingly for the treatment of severe behavioural disturbances in people with pervasive developmental disorders [41,101,102].

However, despite increasing use of SGAs and recent regulatory approval in children and adolescents, data regarding their safety are limited. Based on emerging data consisting of indirect comparisons only, it appears that children and adolescents are at higher risk than adults for antipsychotic-induced hyperprolactinaemia, weight gain and possibly associated metabolic abnormalities [3,7,15,21,24,26,31,37,51,54,74,75,101,102]. Endocrine and metabolic adverse effects are among the most concerning side-effects of commonly used psychotropic medications [17,20]. Growing evidence suggests that children and adolescents who take antipsychotic medications are at a higher risk of weight gain and metabolic effects than adults who use the same drugs [21,25,26,33].

SGA are generally considered to have a favourable neuromotor side-effect profile and comparable efficacy compared to first-generation antipsychotics (FGA), but they are associated with other relevant side-effects (Table 2) [27,78,103]. Current knowl-edge links therapeutic and adverse effects of antipsychotics to their

different effects on dopaminergic, noradrenergic, serotonergic, histaminergic and cholinergic receptors [24,96]. Because SGA have been shown to be associated with fewer extrapyramidal adverse effects, the toxicological potential of these agents may be underestimated [39]. Differences in absorption, distribution and metabolism of antipsychotics mean that higher doses per kilogram weight are required in paediatric populations than in adults to achieve similar efficacy and that more frequent dosing per day may be required in younger children [21]. Young people are more vulnerable to some adverse effects. A slow rate of titration appears to be associated with reduced rates of side effects, particularly extrapyramidal symptoms [26,44].

There are known associations between weight gain and obesity with diabetes, dyslipidemia and hypertension, all of which are leading risk factors for future cardiovascular morbidity (CVD) and mortality [22]. The debate on the use of antipsychotics and other psychotropic agents in children and adolescents is increasingly becoming a discussion about their safety, and less about their efficacy in this population [23,37,51,70].

Given the recent completion of a number of randomized, placebo-controlled trials, this paper reviews the recent literature on side-effects – especially cardiometabolic and endocrine adverse effects – of SGA in children and adolescents. The screening for the management of these adverse effects is given special attention.

2. Method

The background articles cited in this review were found through a Medline/Pubmed/Google Scholar search from 1996 until February 2010 using the following keywords (alone and in different combinations): "child", "children", "adolescents", "adolescent", "paediatric", "adverse/side effect(s)", "atypical/secondgeneration antipsychotic(s)", "metabolic syndrome", "weight gain", "diabetes". By screening of the references lists of relevant articles, additional studies were obtained. The search strategy of reviewing related articles in Medline and Pubmed was also applied. Authors of identified studies were contacted to obtain

Table 2

Common or potentially dangerous side-effects of atypical antipsychotics [21,38,39,79].

Side-effects of atypical antipsychotics

Metabolic adverse effects: weight gain, hyperglycemia and diabetes, hyperlipidemia

Extrapyramidal adverse effects: parkinsonism, acute dystonia, akathisia, tardive dyskinesia

Sedation, decreased ability to concentrate

Endocrine adverse effects: hyperprolactinemia, sexual and reproductive system dysfunction, effect on thyroid function, pancreatitis and elevated liver enzymes

Anticholinergic adverse effects: facial flushing, dry mucous membranes, decreased sweating, constipation, urinary retention, tachycardia, and impaired learning and memory

Cardiac adverse effects: prolonged QT/arrhythmias, hypotension, cardiomyopathy

Agranulocytosis

Seizures

Malignant neuroleptic syndrome

Priapism

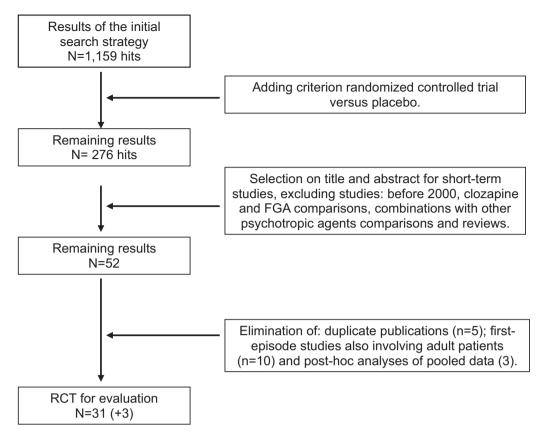


Fig. 1. Results of the systematic literature search (FGA: first generation antipsychotics; (+3): three studies head to head comparison with FGA).

unpublished data. Research papers and clinical trials were excluded if adult patients were the main or only target population. The general review was mainly based on available review papers. The screening process used in the literature search is shown in Fig. 1.

In addition, we systematically reviewed short-term weight gain data in the randomised, placebo-controlled and single-blind trials in children and adolescents of SGA with a paediatric indication (published after 2000). Duplicate papers on the same study or post-hoc analysis of pooled data were excluded. Descriptive statistics were performed with Statistical Analysis Software (SAS, Carey NC). In studies where 7% or more weight gain were reported, we calculated numbers needed to harm (NNH) with 95% confidence intervals (CI). For studies with data on both mean weight gain and standard deviation, a formal meta-analysis was performed using RevMan Analyses (RevMan 5, a meta-analytic standard software used by the Cochrane collaboration [The Cochrane Collaboration, 2003]). Continuous data were reported as presented in the original studies, i.e., last observation carried forward, without any assumptions about those lost to follow-up. In cases were more than one active treatment arm existed per study, the placebo arm was entered twice (n = 538). Since all studies reported change in kilogram, we calculated weighted mean differences. Due to the heterogeneity of the included studies, we used the more conservative random effects model. All analyses were two-tailed, with alpha set at 0.05.

3. Results

Results that are presented are derived from a synopsis of the published literature, including a compilation of primary, published data (see tables) and of summaries and conclusions from relevant prior review articles. In total, we identified 31 studies, with 3595 patients, which reported randomized clinical trial data meeting our inclusion criteria (Table 3) (two schizophrenia trials that compared SGA to FGA were added to the table, but not included in the following analyses of the placebo-controlled trials) [4,5,7,14,34–36,43,46,47,49,50,56–

58,63,64,73,81,82,85,86,104,111,112,114,116-118,123,126].

We identified four papers, which presented clinical practice guidelines specifically targeting children and adolescents [21,24,38,103]. A recent systematic evaluation of 18 clinical practice guidelines for screening of metabolic risk in adult patients with schizophrenia [33] identified four additional publications, which also mentioned patients <18 years [4,15,32,55].

3.1. Weight gain

Thirty-one controlled studies with SGA in the defined target population were found including youth with different diagnoses, 29 double-blind trials [4,5,7,14,34,36,43,46,47,49,50,56,58,63, 64,73,81,82,85,86,104,111,112,114,118,123,126] and two studies without a placebo arm [35,57].

The mean weight changes and NNHs (data available in 16 trials, n = 2695) are presented in Table 3. The mean weight change per SGA in individual short-term studies varied from -0.2 (ziprasidone) to 4.3 kg (olanzapine), while in a pooled analysis, the mean weight change varied significantly between drugs from 0.5 (ziprasidone) to 3.8 kg (olanzapine). Except for ziprasidone, all the weight changes were significant compared to placebo in the majority of studies (Table 3). In a similar way, as the analysis by Allison et al. in adults, Fig. 2 shows the mean weight changes for each individual SGA [2].

The differences between SGA are reflected in the significant NNH ranging from 3 (olanzapine, Cl 2.1–3.1), 6 (risperidone, Cl 4.2–6.3), 9 (quetiapine, no data on autism, Cl 6.4–13.5) to 12

Table 3Weight changes in randomised controlled trials of second-generation antipsychotics in patients < 18 years.</td>

Drug/study	Indication	Age range	Duration (weeks)	Dose	п	Δ Weight gain (kg (sd))	>7% weight gain
Aripiprazole						1.0 (0.6)	
Findling et al. (2008) [46]	Schizophrenia	13 to 17	6	Pla	100	$-0.8 (2.6)^{a}$	1
5	I III			10	100	0 (2.1)	4
				30	100	0.2 (2.3)	5
Findling et al. (2009) [47]	Bipolar, mania mixed	10 to 17	4	Pla	99	0.56 (2.14)	4.6
· · · · · · · · · · · · · · · · · · ·	Dipolar, mana minea	10 10 17	•	10	98	0.82 (1.69)	4
				30	99	1.08 (2.27)	12.3
Marcus et al. (2009) [82]	Autism	6 to 17	8	Pla	51	0.3 (0.3)	8.2
mareas et an (2000) [02]	. Inclosed	0.00 17	0	5	53	$1.3 (0.3)^{a}$	32.7
				10	59	$1.3 (0.3)^{a}$	15.3
				15	54	$1.5 (0.3)^{a}$	30.2
Owen et al. (2009) [104]	Autism	5 to 15	8	Pla	51	0.8 (0.39)	6.1
Gwell et al. (2005) [104]	Autisiii	5 10 15	0	5–15	47	$2(0.3)^{a}$	28.9
Tramontina et al. (2009) [124]	Bipolar and ADHD	8 to 18	6	Pla	18	0.7 (1.2)	No data
11aiii0iitiila et al. (2005) [124]		8 10 18	0	2 to 20	25		
					25	1.2 (1.5)	No data
				Total NNH pooled versus placebo			12 (95% CI 8.3–16.8)
				NNH only schizophrenia and bipolar			39 (95 % CI -0.2-5.4)
Olanzapine						3.8 (0.5)	
Hollander et al. (2006) [64]	Pervasive	6 to 14	8	Pla	5	0.7 (0.7)	20
	developmental disorder	01014	0	i la	5	0.7 (0.7)	20
				10	6	$3.4(2.2)^{a}$	66.7
Tohen et al. (2007) [123]	Bipolar, mania	13 to 17	3	Pla	54	0.3 (1.67)	1.9
	Dipolai, maina	10 10 17	5	2.5–20	107	$3.7 (2.2)^{a}$	41.9
Kryzhanovskaya et al. (2009) [73]	Schizophrenia	13 to 17	6	Pla	35	0.1 (2.8)	14.7
Riyzhanovskaya et al. (2003) [75]	Semzophrema	15 10 17	0	2.5–20	72	$4.3 (3.3)^{a}$	45.8
				Total NNH pooled versus placebo	12	4.5 (5.5)	3 (95% CI 2.1-3.1)
				NNH only schizophrenia and bipolar			3 (95 % CI 2.1-3.1)
Quetiapine						2.2 (0.9)	
DelBello et al. (2007) [34]	Bipolar, mood	Mean 14.7	12	300 to 600	20	3.8 (16.2)	No data
DelBello et al. (2009) [35]	Bipolar, depressed	12 to 18	8	Pla	15	0.9 (0.6)	No data
				300 to 600	17	$2.3 (0.6)^{a}$	No data
FDA (2010) [53]	Bipolar, mania S149	10 to 17	3	Pla	89	$0.4 (1.7)^{a}$	0
1511(2010)[55]	Bipolar, maina 51 15	10 10 17	5	400	93	1.7 (2.0)	14.5
				600	95	1.7 (2.3)	9.9
FDA (2010) [53]	Schizophrenia, S112	13 to 17	6	Pla	73	$-0.1 (2.8)^{a}$	6.8
IDA (2010) [33]	Schizophienia, STT2	15 10 17	0	400	73	1.9 (2.5)	23.2
				800	74	1.5 (2.6)	18.2
				Total NNH pooled versus placebo NNH only schizophrenia and bipolar			9 (95% CI 6.4– 13.5) –9 (95% CI 6.4– 13.5)
Risperidone						2.4 (0.9)	
Findling et al. (2000) [43]	Conduct disorder	5 to 15	10	Pla	10	0.74 (0.9)	No data
		- 10 10		0.75 to 1.50	10	$4.2 (0.7)^{a}$	No data
Buitelaar et al. (2001) [14]	Behavioural, aggression	11 to 15	6	Pla	19	0.6	No data
Satemai et al. (2001) [17]	Senavioarai, aggression	11 10 15	0	Mean 2.9	19	2.3ª	No data
Hellings et al. (2001) [63]	Autism	8 to 16	16	Pla	19	0.1 (1.3)	No data
i cinitgo et al. (2001) [05]	Autom	01010	10	Mean 1	11	$4.0(2.5)^{a}$	No data
Van Bollinghon et al. (2001) [120]	Rehavioural	E to 14	4				NO GALA
Van Bellinghen et al. (2001) [126]	Behavioural	6 to 14	4	Pla Mars 1.2	7	0.6	
		F	0	Mean 1.2	6	1.8	33.3
Aman et al. (2002) [4]	Conduct, behavioural	5 to 17	8	Pla	63	0.9 (1.5)	No data
	_			Mean 1.16	55	2.2 (1.8) ^a	No data
Scahill et al. (2003) [112]	Tourette	6 –62 (young mean 11.1)	8	Pla	14	0	No data
				Mean 2.5	12	2.8 ^a	No data

Table 3	(Continued)
---------	-------------

Drug/study	Indication	Age range	Duration (weeks)	Dose	n	Δ Weight gain (kg (sd))	>7% weight gain
Snyder et al. (2002) [118]	Conduct, behavioural	5 to 12	6	Pla	57	0.2 (0.23)	5.4
				Mean 0.98	53	2.0 (0.18) ^a	51.0
Shea et al. (2004) [114]	Autism	5 to 12	8	Pla	39	1 (1.6)	No data
				Mean 1.48	40	2.7 (2.0) ^a	No data
Aman et al (2005) [5,7,85,86]	Autism	5 to 17	8	Pla	52	0.8 (2.2)	No data
				0.5-3.5	49	2.7 (2.9) ^a	No data
Luby et al. (2006) [81]	Autism	2.5 to 6	24	Pla	12	0.61 (1.1)	No data
				Mean 1.14	11	2.96 (2.53) ^a	No data
Nagaraj et al. (2006) [94]	Autism	2 to 9	24	Pla	20	1.71 (1.3)	No data
				Mean 1.0	19	2.81 (2.04)	No data
Armenteros et al. (2007) [8]	ADHD, aggression	7 to 12	4	Pla	13	-0.6	No data
				Mean 1.08	12	0.9	No data
Haas et al. (2009) [56]	Bipolar, mania	10 to 17	3	Pla	58	0.7 (1.9) ^a	5,3
				0.5-2.5	50	1.9 (1.7)	14,3
				3-6	61	1.4 (2.4)	10
Haas et al. (2009) [58]	Schizophrenia	13 to 17	6	Pla	54	0,12 (2.04) ^a	1.8
				1–3	55	1,3 (2.73)	14.5
				4-6	51	1,5 (1.95)	15.7
Haas et al. (2009) [57]	Schizophrenia	13 to 17	8	1.5-6	125	3.2 (3.5)	39.2
				0.15–0.6/kg	132	1.7 (3.2) ^a	15.9
				Total NNH pooled versus placebo			6 (95% CI 4.2-6.3)
				NNH only schizophrenia and bipolar			6 (95 % CI 4.7-7.5)
Ziprasidone						0.5 (0.5)	
Sallee et al. (2000) [111]	Tourette	7 to 17	8	Pla	12	0.8 (2.3)	No data
				Mean 28.2 (5 to 40)	16	0.7 (1.5)	No data
DelBello et al. (2008) [35]	Mixed psychotic sample	10 to 19	3	60 to 160	63	1.0 (1.0)	7.75
FDA [51]	Bipolar mania	10 to 17	4	Pla	88	0.6 (2.3)	3.4
				80–160	149	0.5 (2.2)	6.7
Findling et al. (2010) [50]	Schizophrenia	13 to 17	6	Pla	90	-0.2 (1.6)	No data
				80–160	193	-0.2 (2.0)	No data
				Total NNH pooled versus placebo			36 (95% CI -0.9-6.5 ns)
				NNH only schizophrenia and bipolar			36 (95% CI -0.9-6.5 ns)
Non placebo controlled RCT SGA							
Sikich et al. (2004) [116]	Schizophrenia	8 to 19	8	Hal 5	15	3,5 (3.7)	No data
	.			Ola 12.3	16	$7,1 (4.1)^{a}$	No data
				Ris 4	19	4,9 (3.6)	No data
Sikich et al. (2008) [117]	Schizophrenia	8 to 19	8	Mol 59.9	40	0,3 (2.9)	No data
				Ola 11.4	35	$6,1(3.6)^{a}$	No data
				Ris 2.8	41	3,6 (4.0)	No data

Pla: placebo; Cl: confidence interval; Hal: haloperidol; Mol: molindone; Ris: risperidone; Ola: olanzapine; NNH: numbers needed to harm. ^a Significant compared to placebo or significant difference over groups.

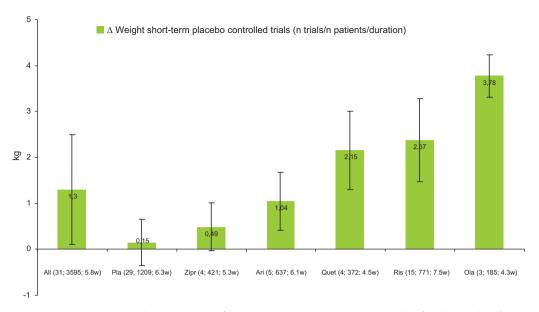


Fig. 2. Mean weight change in short-trem trials (31 studies) (mean change from baseline and standard deviations; number of studies, number of participants, mean duration of studies, w: weeks).

(aripiprazole, CI 8.3–16.8) (overall NNH for all SGA: 7 [CI 5.9–8.0]). The NNH of 36 (CI -0.9-6.5) for ziprasidone was not significantly different from placebo, but this results was only based on a single study in bipolar disorder. The NNH for aripiprazole was in part driven by data in youth with autism. Analysis of the NNH for patients with schizophrenia and bipolar patients only did not change the results for olanzapine (NNH 3, CI 2.1–3.1) nor risperidone (NNH 6, CI 4.7–7.5), but in these samples, aripiprazole did not differ from placebo anymore and was comparable to ziprasidone, with a NNH of 39 (CI -0.2 to 5.4).

A formal meta-analysis was possible in 24 studies including 3048 youth (1934 on an SGA and 1114 on placebo). In these trials of paediatric populations with varying ages and diagnoses, ziprasidone was associated with the lowest weight gain (-0.04 kg, 95% CI:-0.38 to +0.30), followed by aripiprazole (0.79 kg, 95% CI: 0.54 to 1.04), quetiapine (1.43 kg, 95% CI: 1.17 to 1.69) and risperidone (1.76 kg, 95% CI: 1.27 to 2.25) were intermediate, and olanzapine was associated with the most weight gain (3.45 kg, 95% CI: 2.93 to 3.97) (Fig. 3).

3.2. Metabolic adverse effects and metabolic syndrome components

Multiple prospective studies have reported that obesity, metabolic abnormalities and weight gain during childhood strongly predict obesity, metabolic syndrome (MetS), hypertension, cardiovascular morbidity, sleep apnoea, osteoarthritis and malignancy risk in adulthood [22,120].

MetS is a constellation of physical and laboratory features that is more common in obese patients and predisposes adults and children to atherosclerotic CVD. The occurrence of MetS in young individuals predicts early atherosclerosis and vascular disease as adults.

In children, normal values for the parameters that are part of the MetS change with age, height and gender, and therefore modified criteria have been proposed for use in children and adolescents (20,23,24). In children and adolescents, at least three of the five criteria must be met [20,130]. Currently, there exists no universally accepted definition of the MetS for children and adolescents [28].

The International Diabetes Federation (IDF) suggests that for children (10–16 years), MetS can be diagnosed by abdominal obesity and the presence of two or more clinical features. They use

a threshold value for triglyceride level of 1.69 mmol/l (150 mg/dl) (Table 4) [130].

As shown in the weight gain section, one of the most pronounced adverse effects of SGA is weight gain [103]. The average increase in weight and body mass index is twice as high in patients started on SGA compared with first-generation antipsychotics, yet agents within each of these classes produce heterogeneous outcomes [30,116,117]. The odds of developing MetS in MetS free young adults were three-fold in patients started on SGA compared to FGA, and there were significant differences between SGA in their risk to induce MetS in first-episode patients [30].

The effects of SGA in children on glucose and lipids are less well studied (Table 4). Only a limited number of mostly recent studies directly evaluated the impact of SGA on these MetS components in young patients. The SGA associated with the largest weight changes also seem to be associated with the largest effects on glucose and lipids [25,93,98].

Diabetes mellitus is another much-feared consequence of significant weight gain and obesity. In patients receiving SGA, there may also be direct effects on insulin secretion [1]. There may be several underlying mechanisms: increased adipose tissue potentially results in insulin resistance, glucose intolerance and diabetes. The increase in fatty acids could alter glucose metabolism, or the pancreatic β -cell response is diminished [120]. A case-report describes the development of diabetes in a young patient (14 years) after several months of risperidone treatment, which was reversible after stopping the antipsychotic [76]. There is a short- and long-term risk for the development of diabetes. A worrisome finding was that in some patients, diabetes mellitus did not resolve after discontinuation of the antipsychotic [18,76]. In addition to diabetes, SGA have been associated with hyperlipidaemia. This is relevant, as research has shown that hypertriglyceridaemia is an independent risk factor for CVD [9,28,29,32,61,100,120].

3.3. Effect on thyroid function

There are only data available of the effect of quetiapine on thyroid function. Quetiapine has been noted to decrease serum total thyroxine (T4) in some studies. Although the mechanism of this effect is unknown, serum free thyroxine and thyroid

		AP			PBO		STRATUCE AND	Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% CI
1.1.1 Aripiprazole									
Findling'08 10	0	2.1	99	-0.8	2.6	98	3.4%	0.80 [0.14, 1.46]	
Findling'08 30	0.2	2.3	97	-0.8	2.6	98	3.4%	1.00 [0.31, 1.69]	
Findling'09 BD 10	0.82	1.69	75		2.14	65	3.4%	0.26 [-0.39, 0.91]	+
Findling'09 BD 30	1.08	2.27	73	0.56	2.14	65	3.3%	0.52 [-0.22, 1.26]	<u>+</u>
Marcus'09 05 mg/d	1.3	2.23	52		2.24	51	3.1%	1.00 [0.14, 1.86]	
2 가 18 전 전 19 2 19 19 19 19 19 19 19 19 19 19 19 19 19	1.3		59		2.24	51	3.2%		
Marcus'09 10 mg/d	1.5	2.23	54		2.24			1.00 [0.16, 1.84]	
Marcus'09 15 mg/d			12.12			51	3.1%	1.20 [0.35, 2.05]	
Owen'09 2-15 mg/d	2		45		2.03	49	3.2%	1.20 [0.38, 2.02]	
Tramontina'09	1.2	1.5	25	0.72	1.2	18	3.2%	0.48 [-0.33, 1.29]	T
Subtotal (95% CI)			579			546	29.3%	0.79 [0.54, 1.04]	× .
Heterogeneity: Tau ² =					0.61);	$1^{2} = 0\%$			
Test for overall effect:	2 = 6.15) (P < L	1.00001)					
1.1.2 Olanzapine									
Hollander'06	3.4	2.2	6	0.7	0.7	5	1.8%	2.70 [0.84, 4.56]	
Kryzhanovskaya'09	4.26		72	0.13	2.8	34	2.6%	4.13 [2.91, 5.35]	→
Tohen'07	3.66	2.18	105	0.3	1.67	54	3.5%	3.36 [2.75, 3.97]	
Subtotal (95% CI)			183			93	7.9%	3.45 [2.93, 3.97]	•
Heterogeneity: Tau ² =	0.00; Cł	ni² = 1.	91, df =	2 (P =	0.39);	l² = 0%	,		
Test for overall effect:	Z = 12.9	2 (P <	0.0000	11)	100				
		31		1.50					
1.1.3 Quetiapine									
DelBello'07 400	1.7	2	93	0.4	1.7	89	3.6%	1.30 [0.76, 1.84]	
DelBello'07 600	1.7	2.3	95	0.4	1.7	89	3.5%	1.30 [0.72, 1.88]	
DelBello'09	2.3	0.6	17	0.9	0.6	15	3.7%	1.40 [0.98, 1.82]	
Findling'08 400	1.9	2.5	73	-0.1	2.8	73	3.1%	2.00 [1.14, 2.86]	
Findling'08 800	1.5	2.6	74	-0.1	2.8	73	3.1%	1.60 [0.73, 2.47]	
Findling'08 800 Subtotal (95% CI)	1.5	2.6	74 352	-0.1	2.8	73 339	3.1% 17.0 %		+
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² =	1.5 0.00; Cł	2.6 ni² = 2.1	74 352 26, df =	-0.1 4 (P =	2.8	73 339	3.1% 17.0 %	1.60 [0.73, 2.47]	+
Findling'08 800 Subtotal (95% CI)	1.5 0.00; Cł	2.6 ni² = 2.1	74 352 26, df =	-0.1 4 (P =	2.8	73 339	3.1% 17.0 %	1.60 [0.73, 2.47]	+
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	1.5 0.00; Cł	2.6 ni² = 2.1	74 352 26, df =	-0.1 4 (P =	2.8	73 339	3.1% 17.0 %	1.60 [0.73, 2.47]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone	1.5 0.00; Cł Z = 10.7	2.6 ni² = 2. '8 (P <	74 352 26, df = 0.0000	-0.1 : 4 (P = 11)	2.8 0.69);	73 339 I ^z = 0%	3.1% 17.0 %	1.60 [0.73, 2.47] 1.43 [1.17, 1.69]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02	1.5 0.00; Cł Z = 10.7 2.2	2.6 ni² = 2. '8 (P < 1.8	74 352 26, df = 0.0000 55	-0.1 : 4 (P = 11) 0.9	2.8 0.69); 1.5	73 339 I [≈] = 0% 63	3.1% 17.0 % 3.5%	1.60 (0.73, 2.47) 1.43 [1.17, 1.69] 1.30 (0.70, 1.90)	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05	1.5 0.00; CF Z = 10.7 2.2 2.7	2.6 ni² = 2. '8 (P < 1.8 2.9	74 352 26, df = 0.0000 55 49	-0.1 : 4 (P = 11) 0.9 0.8	2.8 0.69); 1.5 2.2	73 339 I ² = 0% 63 52	3.1% 17.0% 3.5% 2.9%	1.60 (0.73, 2.47) 1.43 [1.17, 1.69] 1.30 (0.70, 1.90) 1.90 (0.89, 2.91)	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00	1.5 0.00; Cł Z = 10.7 2.2 2.7 4.2	2.6 ni² = 2. '8 (P < 1.8 2.9 0.7	74 352 26, df = 0.0000 55 49 10	-0.1 : 4 (P = 11) 0.9 0.8 0.74	2.8 0.69); 1.5 2.2 0.9	73 339 I ² = 0% 63 52 10	3.1% 17.0% 3.5% 2.9% 3.3%	1.60 (0.73, 2.47) 1.43 [1.17, 1.69] 1.30 (0.70, 1.90) 1.90 (0.89, 2.91) 3.46 (2.75, 4.17)	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3	2.6 ni ^z = 2. '8 (P < 1.8 2.9 0.7 2.73	74 352 26, df = 0.0000 55 49 10 55	-0.1 : 4 (P = 11) 0.9 0.8 0.74 0.12	2.8 0.69); 1.5 2.2 0.9 2.04	73 339 ² = 0% 63 52 10 54	3.1% 17.0% 3.5% 2.9% 3.3% 3.1%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5	2.6 ni ^z = 2. 8 (P < 1.8 2.9 0.7 2.73 1.95	74 352 26, df = 0.0000 55 49 10 55 51	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12	2.8 0.69); 1.5 2.2 0.9 2.04 2.04	73 339 * = 0% 63 52 10 54 54	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9	2.6 ni ² = 2. 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7	74 352 26, df = 0.0000 55 49 10 55 51 49	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9	73 339 I ² = 0% 63 52 10 54 54 54 57	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.3% 3.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5	2.6 ni ² = 2. '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4	74 352 26, df = 0.0000 55 49 10 55 51	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.9	73 339 * = 0% 63 52 10 54 54	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9	2.6 ni ² = 2. 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7	74 352 26, df = 0.0000 55 49 10 55 51 49	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9	73 339 I ² = 0% 63 52 10 54 54 54 57	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.3% 3.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 1-3 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4	2.6 ni ² = 2. '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4	74 352 26, df = 0.0000 55 49 10 55 51 49 60	-0.1 : 4 (P = 1) 0.9 0.8 0.74 0.12 0.72 0.7 0.7	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.9	73 339 1 ² = 0% 63 52 10 54 54 57 57	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 9D 0.5-2.5 Haas'09 9D 3-6 Hellings'01	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4	2.6 ni ^z = 2. '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.5	74 352 26, df = 0.0000 55 49 10 55 51 49 60 11	-0.1 : 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.7 0.1	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.9 1.3	73 339 ² = 0% 63 52 10 54 54 54 57 57 11	3.1% 17.0% 3.5% 2.9% 3.3% 3.3% 3.3% 3.3% 3.2% 2.0%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06	1.5 0.00; Cł Z = 10.7 2.2 2.7 4.2 1.3 1.9 1.9 1.4 4 2.96	2.6 ni [≈] = 2. '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.5 2.53	74 352 26, df = 0.0000 55 49 10 55 51 49 60 11 11	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.72 0.7 0.7 0.7 0.1 0.61	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.9 1.3 1.1	73 339 ² = 0% 63 52 10 54 54 57 57 11 12	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.4% 3.4% 3.2% 2.0% 2.1%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06 Nagaraj'06 Shea'04	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 2.96 2.81 2.7	2.6 ni ² = 2: '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.5 2.53 2.04 2	74 352 26, df = 0.0000 55 49 10 55 51 49 60 11 11 19 40	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.7 0.7 0.1 0.61 1.71 1	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.3 1.1 1.3 1.6	73 339 1 ² = 0% 63 52 10 54 54 57 57 11 12 20 38	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2% 2.0% 2.1% 2.8% 3.2%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 0.5-2.5 Haas'09 8D 3-6 Hellings'01 Luby'06 Nagaraj'06	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81	2.6 ni [≠] = 2. '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.5 2.53 2.04	74 352 26, df = 0.0000 55 49 10 55 51 49 60 11 11 11	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.7 0.7 0.1 0.61 1.71 1	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.3 1.1 1.3	73 339 1 ² = 0% 63 52 10 54 54 57 57 57 11 12 20	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2% 2.0% 2.1% 2.8%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI)	1.5 0.00; Cł Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 2.96 2.81 2.7 2.2	2.6 ni ² = 2. '8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.5 2.53 2.04 2.5 3.04 2.1.3	74 352 26, df = 0.00000 55 49 10 55 51 49 60 11 11 11 19 40 52 462	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.1 0.61 1.671 1 0.2	2.8 0.69); 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.2% 2.0% 2.1% 2.8% 2.2% 3.2% 3.5% 3.6.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.02, 2.50] 2.00 [1.43, 2.57]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Heterogeneity: Tau ² =	1.5 0.00; CF Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CF	2.6 ni [#] = 2.: 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 ni [#] = 45	74 352 26, df = 0.00000 55 49 10 55 51 49 60 11 11 11 11 40 52 462 5.50, df	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.1 0.61 1.71 1.02 = 11 (P	2.8 0.69); 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.2% 2.0% 2.1% 2.8% 2.2% 3.2% 3.5% 3.6.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI)	1.5 0.00; CF Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CF	2.6 ni [#] = 2.: 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 ni [#] = 45	74 352 26, df = 0.00000 55 49 10 55 51 49 60 11 11 11 11 40 52 462 5.50, df	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.1 0.61 1.71 1.02 = 11 (P	2.8 0.69); 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.2% 2.0% 2.1% 2.8% 2.2% 3.2% 3.5% 3.6.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 0.5-2.5 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	1.5 0.00; CF Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CF	2.6 ni [#] = 2.: 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 ni [#] = 45	74 352 26, df = 0.00000 55 49 10 55 51 49 60 11 11 11 11 40 52 462 5.50, df	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.1 0.61 1.71 1.02 = 11 (P	2.8 0.69); 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.2% 2.0% 2.1% 2.8% 2.2% 3.2% 3.5% 3.6.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57]	•
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 3-6 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 5.054; CH Z = 7.01	2.6 $ni^{2} = 2:3$ 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.5 2.53 2.04 2.53 2.04 2.53 2.04 2.53 2.04 2.53 2.04 2.53 2.04 2.53 2.04 2.5 2.53 2.04 2.5 2.54 2.54 2.5 2.54 2.54 2.55 2.54 2.55 2.54 2.55 2.54 2.55 2.54 2.55 2.5	74 352 26, df = 0.0000 55 49 10 55 51 49 60 55 51 11 11 11 11 11 19 40 52 2462 5.50, df =	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.1 0.61 1.71 1 0.2 = 11 (P)	2.8 0.69); 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00	73 339 ² = 0% 63 52 10 54 57 57 57 11 12 20 38 56 484 40001);	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2% 3.2% 3.2% 3.5% 3.5% 3.5% 3.6.4% 2° = 76%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.43 [1.17, 1.69] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CH Z = 7.01	2.6 $ni^{2} = 2.2$ 1.88 (P < 1.88 (P < 1.87 2.9 0.7 2.73 1.95 1.7 2.4 2 2.53 2.04 2 1.3 $ni^{2} = 4\xi$ (P < C 2.2	74 352 26, df = 0.0000 55 49 10 55 49 10 55 51 49 60 11 11 11 11 19 40 52 2.50, df 142 3.50, df	-0.1 (P = (P = (1) 0.9 0.8 0.74 0.12 0.7 0.7 0.7 0.7 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3	73 339 ² = 0% 63 52 10 54 54 54 57 11 12 20 38 56 484 90001);	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2% 2.1% 2.1% 2.8% 3.2% 3.5% 3.6.4% ≈ = 76%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 0.5-2.5 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CH Z = 7.01 0.5 -0.22	2.6 $n^{12} = 2.8$ 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 $n^{12} = 45$ (P < C 2.2 2.02	74 352 26, df = 0.0000 55 49 10 55 51 49 60 11 11 11 11 19 40 52 2,60, df 149 20,0001	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.7 0.61 1.71 1.0.2 = 11 (P) 0.6 -0.22	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57	73 339 ² = 0% 63 52 10 54 54 57 11 12 20 38 56 484 90001); I' 88 90	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2% 2.0% 2.0% 2.2% 3.5% 3.5% 3.5% 3.5% 3.7%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Heas'09 8D 0.5-2.5 Hellings'01 Luby'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CH Z = 7.01	2.6 $n^{12} = 2.2$ 8 (P < 1.8 2.9 0.7 2.73 1.95 2.53 2.04 2 1.3 $n^{12} = 4\xi$ (P < C 2.2 2.02	74 352 26, df = 0.0000 55 49 10 55 51 49 40 60 11 11 11 19 40 60 11 11 11 19 40 22 462 5.5, df = 40 21 19 31 19 31 19 31 19 31 19 31 10	-0.1 (P = (P = (1) 0.9 0.8 0.74 0.12 0.7 0.7 0.7 0.7 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3	73 339 ² = 0% 63 52 10 54 54 54 57 11 12 20 38 66 57 711 12 20 38 66 484 484 9001); ²	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.2% 2.0% 2.1% 2.8% 3.2% 3.6.4% *= 76% 3.5% 3.7% 2.2%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43] -0.10 [-1.59, 1.39]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00 Subtotal (95% CI)	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; Cf Z = 7.01 0.5 -0.22 0.7	2.6 1.8 (P < 1.8 2.9 0.7 2.73 1.95 2.73 1.95 2.53 2.04 2 1.3 $1^2 = 4\xi$ (P < C 2.22 2.02 1.5	74 352 26, df = 0.0000 55 49 10 55 51 49 49 60 11 11 11 19 40 60 11 11 11 19 40 22 462 5,50, df 149 193 16 358	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.1 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57 2.3	73 339 1 ² = 0% 63 52 10 54 54 54 57 11 12 20 38 56 484 484 90001); I' 88 88 90 12 190	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.2% 2.0% 2.1% 2.8% 3.2% 3.5% 3.6.4% ₹= 76% 3.5% 3.7% 2.2% 9.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00 Subtotal (95% CI) Heterogeneity: Tau ² =	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; Cf Z = 7.01 0.5 -0.22 0.7 0.05; Cf 0.5 -0.22 0.7	2.6 1.8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 $1i^2 = 4\xi$ (P < C 2.02 1.5 $1i^2 = 0.1$	74 352 26, df = 0.0000 55 49 10 55 51 49 10 55 51 49 40 00 111 11 11 11 11 19 40 2 5,50, df 40 2 462 2,6,50, df 40 358 808, df = 358 808, df = 358 308, df = 355 300, df = 3556 300, df = 35567 300, df = 35567 300, df = 35567 300, df	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.1 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57 2.3	73 339 1 ² = 0% 63 52 10 54 54 54 57 11 12 20 38 56 484 484 90001); I' 88 88 90 12 190	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.2% 2.0% 2.1% 2.8% 3.2% 3.5% 3.6.4% ₹= 76% 3.5% 3.7% 2.2% 9.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43] -0.10 [-1.59, 1.39]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00 Subtotal (95% CI)	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; Cf Z = 7.01 0.5 -0.22 0.7 0.05; Cf 0.5 -0.22 0.7	2.6 1.8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 $1i^2 = 4\xi$ (P < C 2.02 1.5 $1i^2 = 0.1$	74 352 26, df = 0.0000 55 49 10 55 51 49 10 55 51 49 40 00 111 11 11 11 11 19 40 2 5,50, df 40 2 462 2,6,50, df 40 358 808, df = 358 808, df = 358 308, df = 355 300, df = 3556 300, df = 35567 300, df = 35567 300, df = 35567 300, df	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.1 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57 2.3	73 339 1 ² = 0% 63 52 10 54 54 54 57 11 12 20 38 56 484 484 90001); I' 88 88 90 12 190	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.2% 2.0% 2.1% 2.8% 3.2% 3.5% 3.6.4% ₹= 76% 3.5% 3.7% 2.2% 9.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43] -0.10 [-1.59, 1.39]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; Cf Z = 7.01 0.5 -0.22 0.7 0.05; Cf 0.5 -0.22 0.7	2.6 1.8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 $1i^2 = 4\xi$ (P < C 2.02 1.5 $1i^2 = 0.1$	74 352 26, df = 0.0000 55 49 10 55 49 10 55 51 49 60 11 11 11 11 11 19 40 52 2462 5.50, df = 0.00001 149 193 16 358 08, df = 8.83)	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.1 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57 2.3	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484 10001); 88 90 12 190 ² = 0%	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.1% 3.2% 3.2% 3.2% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.7% 2.2% 9.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43] -0.10 [-1.59, 1.39] -0.04 [-0.38, 0.30]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 8D 0.5-2.5 Haas'09 8D 0.5-2.5 Hellings'01 Luby'06 Nagaraj'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00 Subtotal (95% CI) Heterogeneity: Tau ² =	1.5 0.00; Cf Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; Cf Z = 7.01 0.5 -0.22 0.7 0.05; Cf 0.5 -0.22 0.7	2.6 1.8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 $1i^2 = 4\xi$ (P < C 2.02 1.5 $1i^2 = 0.1$	74 352 26, df = 0.0000 55 49 10 55 51 49 10 55 51 49 40 00 111 11 11 11 11 19 40 2 5,50, df 40 2 462 2,6,50, df 40 358 808, df = 358 808, df = 358 308, df = 355 300, df = 3556 300, df = 35567 300, df = 35567 300, df = 35567 300, df	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.12 0.7 0.7 0.1 0.61 1.71 1 0.2 = 11 (P) 0.6	2.8 0.69); 1.5 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57 2.3	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484 10001); 88 90 12 190 ² = 0%	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.2% 2.0% 2.1% 2.8% 3.2% 3.5% 3.6.4% ₹= 76% 3.5% 3.7% 2.2% 9.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43] -0.10 [-1.59, 1.39]	
Findling'08 800 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.4 Risperidone Aman'02 Aman'05 Findling'00 Haas'09 1-3 Haas'09 4-6 Haas'09 BD 0.5-2.5 Haas'09 BD 0.5-2.5 Haas'09 BD 3-6 Hellings'01 Luby'06 Shea'04 Snyder'02 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect: 1.1.5 Ziprasidone DelBello'08 Findling'10 Sallee'00 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect:	1.5 0.00; CH Z = 10.7 2.2 2.7 4.2 1.3 1.5 1.9 1.4 4 2.96 2.81 2.7 2.2 0.54; CH Z = 7.01 0.5 -0.22 0.7 0.00; CH Z = 2	2.6 $ni^{2} = 2.3$ 8 (P < 1.8 2.9 0.7 2.73 1.95 1.7 2.4 2.53 2.04 2 1.3 $ni^{2} = 4\xi$ (P < C 2.22 2.02 1.5 $ni^{2} = 0.15$	74 352 26, df = 0.0000 55 49 10 55 51 49 60 11 11 11 11 19 40 52 5.50, df 11 11 11 19 40 52 5.50, df 11 11 19 40 52 5.50, df 19 30 8 08, df = 8 30 8 08, df = 19 30 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 49 10 55 55 51 11 11 11 11 11 11 11 11 11 11	-0.1 4 (P = 1) 0.9 0.8 0.74 0.12 0.7 0.7 0.7 0.1 1.71 1.71 1.71 0.2 = 11 (P) 0.6 -0.22 0.8 -0.22 0.8 -0.8 -0.22 0.8 -0.8 -0.22 0.8 -0.8 -0.8 -0.22 0.8 -0.8 -0.8 -0.8 -0.9 -0.8 -0	2.8 0.69); 1.5 2.2 0.9 2.04 1.9 1.3 1.1 1.3 1.6 1.72 < 0.00 2.3 1.57 2.3 0.96);	73 339 ² = 0% 63 52 10 54 54 57 57 11 12 20 38 56 484 9001); 88 90 12 190 1 ² = 0% 1652	3.1% 17.0% 3.5% 2.9% 3.3% 3.1% 3.3% 3.4% 3.2% 2.1% 2.8% 3.2% 3.5% 3.5% 3.5% 3.5% 3.5% 3.5% 3.7% 2.2% 9.4%	1.60 [0.73, 2.47] 1.43 [1.17, 1.69] 1.30 [0.70, 1.90] 1.90 [0.89, 2.91] 3.46 [2.75, 4.17] 1.18 [0.28, 2.08] 1.38 [0.62, 2.14] 1.20 [0.51, 1.89] 0.70 [-0.08, 1.48] 3.90 [2.23, 5.57] 2.35 [0.73, 3.97] 1.10 [0.02, 2.18] 1.70 [0.90, 2.50] 2.00 [1.43, 2.57] 1.76 [1.27, 2.25] -0.10 [-0.70, 0.50] 0.00 [-0.43, 0.43] -0.10 [-1.59, 1.39] -0.04 [-0.38, 0.30]	

Fig. 3. Forest plot of weight change in kilogram in children and adolescents randomly treated with a second-generation antipsychotic or placebo.

stimulating hormone (TSH) generally remain within normal range in paediatric patients receiving quetiapine, suggesting that subjects remain euthyroid [20].

3.4. Hyperprolactinaemia

The changes in prolactin in the RCTs in young patients are generally consistent with data in adults: largest and dosedependent increase with risperidone (seven studies), an increase with olanzapine (two studies), mixed results for quetiapine (four studies) and ziprasidone (three studies) and a decrease with aripiprazole (four studies) (Table 5).

Many SGA cause less hyperprolactinaemia than FGA, although this effect varies across agents and is dose-dependent [20,23,110]. Hyperprolactinaemia is most pronounced with by risperidone and paliperidone, followed by amisulpride and haloperidol [20,68,110]. Risperidone can substantially elevate prolactin levels in a doserelated fashion [7,45,110]. A transient increase was reported with

Table 4

Adults	Children and adolescents
Abdominal obesity	Obesity
Waist circumference \geq 102 cm in males	Waist circumference \geq percentile 90
Waist circumference \geq 88 cm in females	BMI \geq percentile 95
Fasting serum triglyceride levels	Fasting serum triglyceride levels
\geq 1.69 mmol/l (\geq 150 mg/dl)	\geq 1.24 mmol/l (\geq 110 mg/dl)
	\geq 1.7 mmol/l ((\geq 150 mg/dl) IDF (10 to 16 years)
Fasting HDL-cholesterol	Fasting HDL-cholesterol
<1.03 mmol/l (<40 mg/dl) in males	<1.03 mmol/l (<40 mg/dl) (boys and girls)
<1.29 mmol/l (<50 mg/dl) in females	
Blood pressure \geq 130/85 mmHg	Blood pressure \geq percentile 90 (adjusted for sex and age
Fasting glucose	Fasting glucose
\geq 5.6 mmol/l (\geq 100 mg/dl)	\geq 5.6 mmol/l (\geq 100 mg/dl)

IDF: international diabetes federation, waist obligatory criterion.

olanzapine and ziprasidone. Clozapine, quetiapine and sertindole seem not to provoke an increase of the serum concentrations of prolactin [20,44,45,59,60,80,119]. Different studies have shown a mean decreases in serum prolactin during treatment with aripiprazole [46,47,82,104]. The effect of SGA on prolactin is variable and is a consequence of the peripheral antidopaminergic effect [7,46,48,52,82,104,110]. This effect may be more pronounced in postpuberal children and adolescents than in adults. This may be caused by an age-related decrease in dopamine receptors [20,121]. Clinical symptoms of hyperprolactinaemia are presented in Table 6.

4. Monitoring of the metabolic adverse effects

Side-effects of antipsychotics must be monitored in paediatric patients, just as in adults [6,15,23,32,55]. It is important that screening is conducted regularly. In children and adolescents, adverse drug reactions related to antipsychotics seem to occur particularly in the first three months of therapy [1].

To gain insight into a patient's metabolic risk requires the acquisition of basic clinical data, including taking a personal and family history. Laboratory values (e.g. fasting glucose and lipid levels) should be monitored at baseline [6,15,20–24,31,32,55,88,103,120]. At the same time, body weight, height and sex- and age adjusted BMI *z* score and percentile values, as well as blood pressure should be measured.

Correll (2008) recommended checking cardiometabolic health parameters at baseline, 3, 6 and 12 months, with 6-monthly assessments thereafter, unless abnormalities appear [24]. The frequency of testing will depend on the presence of risk factors and detected abnormalities. When significant weight gain occurs or patients develop symptoms that are suggestive of new-onset diabetes, the frequency of the assessments must be increased. Fasting glucose and lipids should be monitored more often in children and adolescents than in adults because children can gain more weight relative to adults and also may be at greater risk for metabolic abnormalities. In adults, recent guidelines have recommended follow-up measurements at six weeks [32] and/ or 12 weeks [32] after initiation of treatment and at least annually [32] or six-monthly [23–25] thereafter. A free online flowchart for screening and monitoring cardiometabolic risk in adults treated with antipsychotic medication was recently published in a joint statement from European psychiatrists, diabetologists and cardiologists (www.europsy.net/, position statements) [32]. These guidelines are summarised in Table 7, and are also be applicable in young patients, taking into account adapted threshold values of the specific variables [23,24,32].

4.1. Body weight

Monitoring weight change as such has limited use in youth because they are expected to gain weight as part of normal development. Weight *z*-score or, especially, BMI *z*-score change is a more accurate measure to follow. The threshold values are different from those used in adults [20,23,24]. A generally accepted definition of clinically significant weight gain during development does not exist, but a BMI increase of at least 0.5 *z*-scores (i.e., standard deviations) has been proposed [20] and applied [128].

Similarly, due to considerable differences in weight-to-heightratio relationships during normal development, BMI is not useful to determine normal or abnormal weight categories. Normative tables by sex and age are available [20,128]. Children and adolescents between the 85th and less than the 95th percentile for BMI by age and sex are considered "overweight", while BMI percentiles by age and sex at or beyond the 95th percentile are considered "obese" (http://www.cdc.gov/obesity/defining.html) [20,24,128].

Independent of total adiposity, a central distribution of fat is believed to be a risk factor for poor health in both adults and children. Excess abdominal fat is associated with hyperlipidaemia, cardiovascular risk factors, type 2 diabetes and other morbidities. Accurate measurement of total and regional body fat is fundamental in order to detect as early as possible whether the child is deviating from normal values. Individuals with high waist circumference are more likely to have hypertension, diabetes, dyslipidemia and MetS. Evidence has supported that waist circumference is a better predictor of CVD and visceral fat than BMI [42]. However, although waist circumference percentile tables that are sex- and age- adjusted are available, the imprecision of this measure in general clinical practice is large in young patients and the routine measurement of waist circumference in youth is currently not endorsed (online: http://www.gghjournal.com/ volume21/1/ab17.cfm) [20,23,24].

4.2. Glucose

Fasting glucose thresholds for prediabetes 5.55-6.94 mmol/l (100–125 mg/dl) and diabetes $\geq 6.99 \text{ mmol/l}$ ($\geq 126 \text{ mg/dl}$) are similar for paediatric and adult patients [20,24].

Symptoms that are suggestive of new-onset diabetes are weight loss, polyuria, polydipsia and change in mental status [20,23]. Also, signs and symptoms of diabetic ketoacidosis should be monitored on a regular basis: rapid onset of polyuria, polydipsia, weight loss, nausea, vomiting, dehydratation, rapid respiration, clouding of sensorium, even coma [6,19].

Table 5Changes in prolactin, glucose and lipids in randomised controlled trials of second-generation antipsychotics in patients <18 years.</td>

		Age range	Duration (weeks)	Effect on prolactin	Effect on glucose	Effect on lipids
Aripiprazole						
Findling et al. (2008) [46]	Schizophrenia	13 to 17	6	Prolactin decrease all arms, significant	No change	No change
Findling et al. (2009) [47]	Bipolar, mania mixed	10 to 17	4	Prolactin decrease all arms, significant	No change	No change
Marcus et al. (2009) [82]	Autism	6 to 17	8	Significant decrease	No change	No change
Owen et al. (2009) [104]	Autism	5 to 15	8	Significant decrease	No change	No change
Tramontina et al. (2009) [124]	Bipolar and ADHD	8 to 18	6	No data	No data	No data
Olanzapine						
Hollander et al. (2006) [64]	Pervasive developmental disorder	6 to 14	8	No data	No data	No data
Tohen et al. (2007) [123]	Bipolar, mania	13 to 17	3	Significant increase	Significant increase	Significant increase cholester and triglycerides
Kryzhanovskaya et al. (2009) [73]	Schizophrenia	13 to 17	6	Significant increase	No change	Significant increase triglyceri trend for cholesterol
Quetiapine						
DelBello et al. (2007) [34]	Bipolar, mood	Mean 14.7	12	No change	No change	No change
DelBello et al. (2009) [35]	Bipolar, depressed	12 to 18	8	Non significant change	No change	Significant increase triglycerides
FDA (2010) [53]	Bipolar, mania S149	10 to 17	3	No change	No change	Significant increase cholester and triglycerides
FDA (2010) [53]	Schizophrenia, S112	13 to 17	6	Prolactin decrease all arms	No change	Significant increase cholester and triglycerides
Risperidone						
Findling et al. (2000) [43]	Conduct disorder	5 to 15	10	No data	No data	No data
Buitelaar et al. (2001) [14]	Behavioural, aggression	11 to 15	6	Significant increase	No data	No data
Hellings et al. (2001) [63]	Autism	8 to 16	16	No data	No data	No data
Van Bellinghen et al. (2001) [126]	Behavioural	6 to 14	4	No data	No data	No data
Aman et al. 2002 [4]	Conduct, behavioural	5 to 17	8	No data	No data	No data
Scahill et al. (2003) [112]	Tourette	6-62	8	No data	No data	No data
		(young mean 11.1)				
Snyder et al. 2002 [118]	Conduct, behavioural	5 to 12	6	Significant increase	No data	No data
Shea et al. (2004) [114]	Autism	5 to 12	8	No data	No data	No data
Aman et al. (2005) [5,7,85,86]	Autism	5 to 17	8	Significant increase	No data	No data
Luby et al. 2006 [81]	Autism	2.5 to 6	24	Significant increase	No data	No data
Nagaraj et al. (2006) [94]	Autism	2 to 9	24	No data	No data	No data
Armenteros et al. (2007) [8]	ADHD, aggression	7 to 12	4	No data	No data	No data
Haas et al. (2009) [56]	Bipolar, mania	10 to 17	3	Dose dependent increase, significant	No change	No change
Haas et al. (2009) [58]	Schizophrenia	13 to 17	6	Dose dependent increase, significant	No change	No change
Haas et al. (2009) [57]	Schizophrenia	13 to 17	8	Increase with both doses	No change	No change
Ziprasidone						
Sallee et al. (2000) [111]	Tourette	7 to 17	8	No change	No change	No change
DelBello et al. (2008) [35]	Mixed psychotic sample	10 to 19	3	Small increase	No change	Significant decrease choleste and triglycerides
FDA [51]	Bipolar mania	10 to 17	4	No change	No change	Significant decrease choleste and triglycerides
Findling et al. (2010) [50]	Schizophrenia	13 to 17	6	No data	No data	No data

Table 6

Signs and symptoms of hyperprolactinemia [20,59,71].

Signs and	symptoms	of hyperpi	olactinemia

Hypogonadism: amenorrhea, low oestrogen (females), low testosterone (males) Stimulation of breast glandular growth (females and males)
Galactorrhea (females > males)
Gynaecomastia (males) and breast tension or tenderness (females)
Libido decreased (females and males)
Sexual dysfunction (males and females)
Osteoporosis (females and males)
Failure to enter or progress through puberty in children (unclear)
Hirsutism (females)
(Controversial) relationship to benign pituitary tumours

4.3. Serum lipids

In children and adolescents (2–18 years), a total cholesterol concentration of 4.40–5.15 mmol/l (170–199 mg/dl) is borderline abnormal and >5.17 mmol/l (\geq 200 mg/dl) is elevated [28]. For LDL, the values are respectively 2.84–3.34 mmol/l (110-129 mg/dl) and >3.36 mmol/l (\geq 130 mg/dl). A HDL concentration of <0.91 mmol/l (<40 mg/dl) is considered to be abnormal for children and adolescents of both sexes [28]. These thresholds are lower than in adults [24].

A triglyceride level of >1.69 mmol/l ($\geq 150 \text{ mg/dl}$) is an abnormal value in young adults [28,130]. An abnormally high triglyceride level in youths is >1.24 mmol/l ($\geq 110 \text{ mg/dl}$) [24].

4.4. Blood pressure

Proper cuff sizes are essential for assessing blood pressure accurately in children [20,65]. In youth, blood pressure need to be adjusted for age, sex, height and weight, for which normative tables are available (http://www.nhlbi.nih.gov/health/prof/heart/ hbp/hbp_ped.pdf).

4.5. Thyroid function

Patients receiving quetiapine should probably have thyroid function tests monitored at baseline, at three months and at 1 year, with additional measurements every three months if TSH is elevated; treatment with thyroxine is not needed, unless serum TSH rises above the normal range [20].

Table 7

EPA clinical practice guidelines for screening and monitoring.

4.6. Prolactin

Regular assessment of menstruation, nipple discharge, gynaecomastia (also in boys), sexual functioning and pubertal development in patients receiving antipsychotic medication is essential. If problems appear temporally related to antipsychotic drug therapy, then check serum prolactin. If serum prolactin is elevated above the normal range, then inquire whether the female patient is taking any form of hormonal contraception and obtain a pregnancy test to rule out pregnancy because both can elevate prolactin levels. In addition, obtain TSH and serum creatinine (to rule out hypothyroidism and renal failure, which can also elevate prolactin) [20].

5. Management and treatment of metabolic adverse effects

Clinicians should be vigilant about the effect on weight gain and all components of the metabolic syndrome when using antipsychotics. In general, prevention of weight gain with nonpharmacologic approaches is preferable, including healthy lifestyle counselling (diet and regular exercise) at the time of treatment initiation and thereafter [125]. Not all antipsychotics are equal in their potential to induce cardiometabolic side-effects and that the least problematic agents should be used first whenever possible [37]. First line treatment options from a cardiometabolic point of view are aripiprazole or ziprasidone (both SGA) or molindone (FGA), as these thee agents have been found to induce the least adverse metabolic side effects. In paediatric populations, however, all antipsychotics have displayed some adverse metabolic effects. so it is unlikely that any truly metabolically neutral FGA or SGA agents exist. The consequence of this finding is that monitoring of adverse metabolic effects is indicated in every patient receiving antipsychotic treatment.

Options for management after weight gain has already occurred include potentially lowering doses or switching to alternative agents with lower risk (aripiprazole or ziprasidone) [10,99]. Alternatively, one could also add a healthy lifestyle intervention, or a medication that can alleviate specific adverse effects [24]. When there is an alternative treatment, the drug will probably be discontinued if an adverse effect becomes a problem that supersedes the benefits of medication [79]. The presented

Ask	Measure	Decide
Personal/family history	Height	Behavioural change (overweight/obesity, prediabetes)
Cardiovascular disease	Weight	Smoking cessation
Diabetes	Waist circumference	Switch medication
Hypertension	Blood pressure	
Activity level	Fasting glucose	
Diet	Fasting lipids	
Smoking	Prolactine when treatment with prolactin elevating agents	Referral to specialised services when severe abnormalities are preser

At minimum, the psychiatric provider should take responsibility for the monitoring of metabolic side effects of psychotropic agents

	Baseline	6 weeks ^b	12 weeks	At least annually thereafter ^b
Medical history	х			
Weight (BMI), waist ^a	х	х	х	х
Blood pressure	х	х	х	х
Fasting glucose	х	х	х	х
Fasting lipids	х	х	х	х
Lifestyle advice	x			х

Adapted from [32].

^a During initial phase of treatment, it is important to measure weight and height weekly to identify patients who gain weight rapidly; assessment of waist is difficult to interpret in growing youth, if performed, sex- and age-adjusted percentile tables are necessary: http://www.gghjournal.com/volume21/1/ab17.cfm.

^b US recommendations do not suggest routine glucose and lipid monitoring every 6 weeks and recommend glucose and lipid monitoring every 6 months [23,24].

monitoring and management recommendations in youth treated with antipsychotics are not treatment guidelines [20,24,32,83].

5.1. Body weight

Some studies have indicated that weight control programs focusing on nutrition, exercise and motivation are effective in minimizing weight gain [39,125]. The American Heart Association provided updated dietary recommendations for children (older than 2 years). These guidelines include recommendations that children and adolescents have a balanced caloric intake with sufficient physical activity to achieve an appropriate weight [28].

Therapies that have had some success in producing weight loss or at least stabilizing body weight in paediatric patients receiving antipsychotics include amantadine, metformin, orlistat and topiramate [16,20,23,72,120,126]. A recent systematic review and meta-analysis on the effectiveness of medication used to attenuate antipsychotic-related weight gain only found a significantly greater effect than with placebo for metformin, fefluramine, sibutramine, topiramate and reboxetine. The database was largest for metformin, but a significant weight reduction compared to placebo was only observed after weight gain had already occurred, not when given concurrently with starting the antipsychotic in a preventive fashion. Overall, the authors concluded that at present none of the treatments had sufficient evidence to be recommended for broad clinical use [84], and only two of the 32 trials had been conducted in paediatric patients.

One of these paediatric studies was a randomized, double-blind, placebo-controlled trial that examined metformin treatment of weight gain associated with SGA in children and adolescents. Weight was stabilized in subjects receiving metformin, whereas patients randomized to placebo continued to gain more weight [72]. Metformin therapy was found to be safe and effective in reducing weight gain, impaired insulin sensitivity (metformin decreases insulin resistance), and abnormal glucose metabolism that can result from treatment of children and adolescents with SGA. This is relevant as it can be particularly difficult to successfully institute behavioural and dietary modifications in subjects with psychiatric disorders [72]. A recent open label trial in youth (10-18 years) treated with SGA and metformin showed stabilisation of the weight, and also a significant decrease in triglyceride levels. However, metformin did not improve insulin sensitivity and showed a trend toward increasing both LDL and cholesterol. Nevertheless, the authors concluded that metformin holds promise as a treatment for weight gain in paediatric patients [115].

5.2. Dyslipidemia

Dyslipidemia should be treated initially with dietary measures. If this is not sufficient, drug therapy may be given with gemfibrozil, fenofibrate, a statin, fish oil or niacin [20]. Statins have recently been shown to be both effective and safe in antipsychotic induced dyslipidemia in adults [29,61]. Pharmacologic intervention in children younger than 8 years is only implemented if these patients have a dramatic elevation of cholesterol values (>12.93 mmol/l or >500 mg/dl) [28].

5.3. Hyperglycaemia and diabetes

Hyperglycemia and diabetes may be treated with diet, oral antidiabetic agents, or insulin, as needed, but it should also be remembered that diabetes induced by SGA agents may be reversible when the drug is stopped or switched to a metabolically more neutral agent [20].

5.4. Prolactin

If other possibilities of prolactin elevation are ruled out and side-effects are severe and persistent, switching to a non-prolactin elevating agent should be considered if dose reduction alone is insufficient. If switching is not an option, a dopamine agonist or partial agonist can be added.

6. Limitations

This review is based on a rather limited number of studies, which often did not present a comprehensive assessment of potential metabolic side-effects of SGA. The proposed clinical practice guidelines were not developed by a multidisciplinary group, did not involve stakeholders and were not supported by official medical societies. Patients were not involved in the creation of these recommendations and the guidelines were not tested in the targeted clinician group.

7. Discussion

The reviewed data suggest that olanzapine is the antipsychotic drug most likely to be associated with weight gain in children and adolescents across different indications, followed by risperidone and quetiapine. Across all studied samples, aripiprazole induced some weight gain, while ziprasidone was weight neutral compared to placebo. However, weight gain with aripiprazole was most pronounced in youth with autism, without available data in patients with autism spectrum disorders for quetiapine or ziprasidone. In the analysis of NNH limited to patients with schizophrenia or bipolar disorder, both aripiprazole and ziprasidone did not differ from placebo nor from each other. This difference in results suggests either that patients with autistic disorder are more vulnerable to weight gain, or that this vulnerability is related to the younger age of these patients or to the likely smaller degree of prior antipsychotic exposure and weight gain, leaving more room to detect the antipsychotic related weight gain. These results are generally similar to studies in adults with schizophrenia and schizophreniform disorders, showing that clozapine and olanzapine were the most likely to lead to weight gain, followed by quetiapine and risperidone. Aripiprazole and ziprasidone were relatively benign, but not without weight increase, especially in first episode patients and those without prior antipsychotic treatment [3,25,39,46,69,77,78,87,99,107,122]. Due to negative metabolic outcomes, recent treatment guidelines for adult patients with schizophrenia have suggested not to use clozapine and olanzapine as first-line agents [12].

At present, there are insufficient data to explore potential doserelated effects of the different antipsychotics in youngsters. Only one paediatric cohort study has examined this question in antipsychotic-naive youth treated for the first three months, finding that weight gain and metabolic adverse effects were doserelated with risperidone, whereas only metabolic adverse effects were dose related with olanzapine, while no dose relationship was observed with aripiprazole and quetiapine [25]. A recent systematic review in adults on the subject did not find strong evidence that metabolic changes were dose-related [113].

Patients who are previously unexposed to antipsychotics are particularly vulnerable to weight gain and this weight gain occurs rapidly within the first few weeks [25,122]. Making predictions on who is more likely to gain weight on a specific agent is difficult. Some clinical variables have been associated with a greater liability for weight gain: younger age, presence of overweight or obesity; being underweight, familial history of obesity, non-white ethnicity, tendency to eat when under stress, cannabis use [3,32]. Early weight gain (\geq 7% body weight within the first six weeks of olanzapine treatment) appears to be a good predictor of subsequent significant weight gain [32,129]. In addition to lower baseline BMI, higher haemoglobin level, red blood cell count and hematocrit were statistically significant biochemical predictors of greater BMI increase and obesity development in (the first episode of) schizophrenia [11]. Furthermore, children and adolescents with mental health problems often have multiple risk factors, including poor nutrition, inadequate exercise, substance abuse and lack of adequate health care monitoring [127].

Mechanisms of weight increase associated with pharmacological treatment have not been fully understood. Potential mechanisms include disease related factors (changes in the metabolic rate, appetite changes), drug related factors (impact of drugs on serotonergic, histaminergic and noradrenergic transmission; satiety changes, sedation, dry mouth) and improvement related factors (dietary changes, changes in physical activity) [32,38–40].

A small study indicated that weight gain during risperidone treatment is reversible after medication discontinuation in children with disruptive disorders. But far more data are needed before an assumption can be made that this is the case for all children [79]. Of note, weight gain associated with SGA in children did not differ between those taking and those not taking stimulant co-medication [48,120].

Obesity has, besides the effect on medical morbidity, an impact on self-esteem, social development and compliance [39,67,106]. Weight gain is a serious complication in children and adolescents because weight gain is associated with health and psychosocial issues at a time when self-esteem and sexual functioning develop. Weight gain can also be associated with the development of eating disorders and depression [23].

Because of variable individual sensitivities, not every patient with hyperprolactinaemia develops symptoms. Antipsychoticinduced hyperprolactinaemia in children may normalize over time, but there are concerns about the potential for delayed pubertal development. Based on limited and solely medium termdata, most children and adolescents exposed to risperidone, which tends to raise prolactin the most, seem to progress normally through puberty [20,121]. In one study, 28% of the children had prolactin levels of more than two-times the upper limit of normal, while none of the children showed clinical signs of hyperprolactinaemia at 10 weeks [41]. Nevertheless, unless sufficiently large, long-term studies are completed in strictly peripubertal subjects that directly assess Tanner staging, it is not possible to fully rule out a potentially adverse effect of persistent prolactin elevation during development.

The exact effect of hyperprolactinaemia during puberty, an essential period for the development of bone mass, is largely unknown, although one might expect that hypogonadism, the shutdown of sex hormone production that can result from hyperprolactinaemia during this period would affect achievement of peak bone mass. On the other hand, the majority of peak bone mass is determined genetically, while up to 20% may be affected by factors such as the environment or hormones during puberty. Most of the studies in the endocrine literature addressing prolactinomas and changes in bone density involve prolactin levels much higher than the range one generally sees antipsychotic treatment [106]. Gynaecomastia can be a sign of hyperprolactinaemia in girls as well as in boys, but girls are more likely to develop this adverse effect [20,71].

The recent European guidelines on screening and monitoring for diabetes and CVD risk-factors mentioned the risks in children and adolescents, but did not formulate specific guidance for this population. These guidelines were a joint initiative of the European Psychiatric Association (EPA), the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC) [32]. The need for screening, monitoring and prevention of diabetes and other CVD-risk factors has been acknowledged in the psychiatric literature and some of the more recent general treatment guidelines for adults with severe mental illness. But the evaluation of screening practices by clinicians consistently shows that these are suboptimal [13,62,66,89–91,95,97]. The poor rate of screening was recently also confirmed in children treated with antipsychotics [92], although there is agreement that routine screening and monitoring of side-effects is warranted. Strategies need to be developed for implementing the existing guidelines in daily, routine clinical practice.

8. Summary and conclusion

The aim of this paper was to increase the awareness of health professionals caring for young patients that there is a need to screen regularly for cardiometabolic adverse effects in this vulnerable population. Prevention of these side-effects, including antipsychotic choice, is essential.

Evidence of efficacy and safety of the use of atypical antipsychotics in children and adolescents is growing, but still limited, especially regarding the cardiometabolic safety of the available treatment alternatives. However, the study of antipsychotic cardiometabolic safety is important for two main reasons. First, treatment with antipsychotics is often continued for long periods of time and during critical stages of child development. Second, exposure of a developing organism to a psychotropic medication, even for a short time, may have effects that are longlasting or that emerge later in life. Research on short- and longterm safety of psychotropic drugs should be considered a priority in paediatric psychopharmacology [50,105].

Child psychiatrist and other mental health personnel prescribing antipsychotics have to coordinate the assessment and management within a shared care model with general and specialist health-care services. A good collaboration between child and adolescent psychiatrists, general practitioners and paediatricians is essential for the monitoring and management of severe adverse effects of antipsychotics in children and adolescents. Only by including such efforts can the intricately linked mental and physical health of youth be maximized.

Contributors

M. De Hert and M. Dobbelaere wrote the first draft of the paper. M. Dobbelaere did the initial systematic review of the literature. Data-extraction and analysis from the systematic review was done by M. De Hert and E. Sheridan. E. Sheridan did the meta-analysis. All authors contributed to the subsequent versions of the paper.

Funding source

None.

Conflict of interest statement

This review and clinical practice guideline was written without support from a pharmaceutical company.

Prof M. De Hert has been a consultant for and received grant/ research support and honoraria from, and been on the speakers/ advisory boards Astra Zeneca, Bristol-Myers Squibb, Eli Lilly, Janssen-Cilag, Lundbeck JA, Pfizer and Sanofi-Aventis.

- Dr M. Dobbelaere has no conflicts of interest.
- Dr E. Sheridan has no conflicts of interest.

Dr D. Cohen received honoraria from, and has been on the speakers/advisory boards of AstraZeneca, Bristol-Myers Squibb and Eli Lilly.

Prof C. Correll has been a consultant and/or advisor to or has received honoraria from: Actelion, AstraZeneca, Boehringer-Ingelheim, Bristol-Myers Squibb, Cephalon, Eli Lilly, Ortho-McNeill/Janssen/J&J, GSK, Hoffmann-La Roche, Medicure, Otsuka, Pfizer, Schering-Plough, Supernus, Takeda and Vanda.

Acknowledgement

We thank Brystol-Myers Squib and Janssen-Cilag for access data on file on metabolic data, which was not available in published reports. We also thank M. Van Bellinghen [126], L. Rohde and C.P. Zeni on behalf of the ProCAB–Juvenile Bipolar Disorder Outpatient Program [116] to provide additional data.

References

- Alacqua M, Trifiro G, Arcoraci V, Germano E, Magazu A, Calarese T, et al. Use and tolerability of newer antipsychotics and antidepressants: a chart review in a pediatric setting. Pharm World Sci 2008;30(1):44–50.
- [2] Allison DB, Mentore JL, Heo M, Chandler LP, Cappelleri JC, Infante MC, et al. Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 1999;156(11):1686–96.
- [3] Alvarez-Jimenez M, Gonzalez-Blanch C, Crespo-Facorro B, Hetrick S, Rodriguez-Sanchez JM, Perez-Iglesias R, et al. Antipsychotic-induced weight gain in chronic and first-episode psychotic disorders. A systematic critical reappraisal. CNS Drugs 2008;22(7):547–62.
- [4] Aman MG, De Smedt G, Derivan A, Lyons B, Findling RL, Risperidone Disruptive Behavior Study Group. Double-blind, placebo-controlled study of risperidone for the treatment of disruptive behaviors in children with subaverage intelligence. Am J Psychiatry 2002;159(8):1337–46.
- [5] Aman MG, Arnold LE, McDougle CJ, Vitiello B, Scahill L, Davies M, et al. Acute and long-term safety and tolerability of risperidone in children with autism. J Child. Adolesc Psychopharmacol 2005;15(6):869–84.
- [6] American Diabetes Association, American Psychiatric Association. Consensus development conference on antipsychotic drugs and obesity and diabetes. Diabetes Care 2004;27(2):596–601.
- [7] Anderson GM, Scahill L, McCracken JT, McDougle CJ, Aman MG, Tierney E, et al. Effects of short- and long-term risperidone treatment on prolactin levels in children with autism. Biol Psychiatry 2007;61(4):545–50.
- [8] Armenteros JL, Lewis JE, Davalos M. Risperidone augmentation for treatmentresistant aggression in attention-deficit/hyperactivity disorder: a placebocontrolled pilot study. J Am Acad Child Adolesc Psychiatry 2007;46(5): 558–65.
- [9] Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with non-fasting triglycerides and risk of cardiovascular events in women. JAMA 2007;298:309–16.
- [10] Bhuvaneswar CG, Baldessarini RJ, Harsh VL, Alpert JE. Adverse endocrine and metabolic effects of psychotropic drugs. CNS Drugs 2009;23(12):1003–21.
- [11] Boden R, Haenni A, Lindstrom L, Sundstrom J. Biochemical risk factors for development of obesity in first-episode schizophrenia. Schizophr Res 2009;115(2–3):141–5.
- [12] Buchanan RW, Kreyenbuhl J, Kelly DL, Noel JM, Boggs DL, Fischer BA, et al. Schizophrenia Patient Outcomes Research Team (PORT). The 2009 schizophrenia PORT psychopharmacological treatment recommendations and summary statements. Schizophr Bull 2010;36(1):71–93.
- [13] Buckley PF, Miller DD, Singer B. Clinicians' recognition of the metabolic adverse effects of antipsychotic medications. Schizophr Res 2005;79:281–8.
- [14] Buitelaar JK, van der Gaag RJ, Cohen-Kettenis P, Melman CT. A randomized controlled trial of risperidone in the treatment of aggression in hospitalized adolescents with subaverage cognitive abilities. J Clin Psychiatry 2001;62(4): 239–48.
- [15] Cahn W, Ramlal D, Bruggeman R, de Haan L, Scheepers FE, van Soest MM, et al. Preventie en behandeling van somatische complicaties bij antipsychoticagebruik. Tijdschr Psychiatr 2008;50(9):579–91.
- [16] Canitano R. Clinical experience with topiramate to counteract neuroleptic induced weight gain in 10 individuals with autistic spectrum disorders. Brain Dev 2005;27(3):228–32.
- [17] Cheng-Shannon J, McGough JJ, Pataki C, McCracken JT. Second-generation antipsychotic medications in children and adolescents. J Child. Adolesc Psychopharmacol 2004;14(3):372–94.
- [18] Cohen D, Huinink S. Atypical-antipsychotic-induced diabetes mellitus in child and adolescent psychiatry. CNS Drugs 2007;21(12):1035–8.
- [19] Cohen D, Correll CU. Second-generation antipsychotic-associated diabetes mellitus and diabetic ketoacidosis: mechanisms, predictors, and screening need. J Clin Psychiatry 2009;70(5):765–6.

- [20] Correll CU, Carlson HE. Endocrine and metabolic adverse effects of psychotropic medications in children and adolescents. J Am Acad Child Adolesc Psychiatry 2006;45(7):771–91.
- [21] Correll CU, Penzner JB, Parikh UH, Mughal T, Javed T, Carbon M, et al. Recognizing and monitoring adverse events of second-generation antipsychotics in children and adolescents. Child Adolesc Psychiatr Clin N Am 2006;15(1):177–206.
- [22] Correll CU. Weight gain and metabolic effects of mood stabilizers and antipsychotics in pediatric bipolar disorder: a systematic review and pooled analysis of short-term trials. J Am Acad Child Adolesc Psychiatry 2007;46(6): 687–700.
- [23] Correll CU. Antipsychotic use in children and adolescents: minimizing adverse effects to maximize outcomes. J Am Acad Child Adolesc Psychiatry 2008;47(1):9–20.
- [24] Correll CU. Monitoring and management of antipsychotic-related metabolic and endocrine adverse events in pediatric patients. Int Rev Psychiatry 2008;20(2):195–201.
- [25] Correll CU, Manu P, Olshanskiy V, Napolitano B, Kane JM, Malhotra AK. Cardiometabolic risk of second-generation antipsychotic medications during first-time use in children and adolescents. JAMA 2009;302(16):1765–73.
- [26] Correll CU, Sheridan EM, DelBello MP. Antipsychotic and mood stabilizer efficacy and tolerability in pediatric and adult patients with bipolar I mania: a comparative analysis of acute, randomized, placebo-controlled trials. Bipolar Disord 2010;12(2):116–41.
- [27] Croarkin PE, Graham JE, Mayes TL. Neuroleptic malignant syndrome associated with atypical antipsychotics in pediatric patients: a review of published cases. J Clin Psychiatry 2008;69(7):1157–65.
- [28] Daniels SR, Greer FR, the Committee on Nutrition. Lipid screening and cardiovascular health in childhood. Pediatrics 2008;122(1):198–208.
- [29] De Hert M, Kalnicka D, van Winkel R, Hanssens M, Van Eyck L, Wampers D, et al. Treatment with rosuvastatin for severe dyslipidemia in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 2006;67(12): 1889–96.
- [30] De Hert M, Schreurs V, Sweers K, Van Eyck D, Hanssens L, Sinko S, et al. Typical and atypical antipsychotics differentially affect long-term incidence rates of metabolic syndrome in first-episode patients with schizophrenia: a retrospective chart review. Schizophr Res 2008;101(1–3):295–303.
- [31] De Hert M, Schreurs V, Sweers K, Vancamfort D, Van Winkel L. Metabolic syndrome in people with schizophrenia: a review. Schizophr Res 2009;8(1): 15–22.
- [32] De Hert M, Dekker JM, Wood D, Kahl KG, Holt RIG, Moller HJ. Cardiovascular disease and diabetes in people with severe mental illness: Position statement from the European Psychiatric Association (EPA), supported by the European Association for the Study of Diabetes (EASD) and the European Society of Cardiology (ESC). Eur Psychiatry 2009;24(6):412–24.
- [33] De Hert M, Vancampfort D, Correll CU, Mercken V, Peuskens J, Sweers K, van Winkel R, Mitchell A. A systematic evaluation and comparison of the guidelines for screening and monitoring of cardiometabolic risk in people with schizophrenia. Br J Psychiatry 2010; submitted.
- [34] DelBello MP, Adler CM, Whitsel RM, Stanford KE. Strakowski SM. A 12-week single-blind trial of quetiapine for the treatment of mood symptoms in adolescents at high risk for developing bipolar I disorder. J Clin Psychiatry 2007;68(5):789–95.
- [35] DelBello MP, Versavel M, Ice K, Keller D, Miceli J. Tolerability of oral ziprasidone in children and adolescents with bipolar mania, schizophrenia, or schizoaffective disorder. J Child. Adolesc Psychopharmacol 2008;18(5):491–9.
- [36] DelBello MP, Chang K, Welge JA, Adler CM, Rana M, Howe M, et al. A doubleblind, placebo-controlled pilot study of quetiapine for depressed adolescents with bipolar disorder. Bipolar Disord 2009;11(5):483–93.
- [37] DelBello MP, Correll CU. Primum non nocere: balancing the risks and benefits of prescribing psychotropic medications for youth with bipolar disorder. Bipolar Disorders 2010;12:113–5.
- [38] Dobbelaere M, De Hert M. Metabole en endocriene bijwerkingen van atypische antipsychotica bij kinderen en jongeren. Richtlijnen voor de klinische praktijk. Tijdschr Geneesk 2010;66(14–15):705–12.
- [39] Dubois D. Toxicology and overdose of atypical antipsychotic medications in children: does newer necessarily mean safer? Curr Opin Pediatr 2005;17(2): 227–33.
- [40] Elman I, Borsook D, Lukas SE. Food intake and reward mechanisms in patients with schizophrenia: implications for metabolic disturbances and treatment with second-generation antipsychotic agents. Neuropsychopharmacology 2006;31:2091–120.
- [41] Erickson CA, Stigler KA, Posey DJ, McDougle CJ. Risperidone in pervasive development disorder. Expert Rev Neurother 2005;5(6):713–9.
- [42] Fernandez JR, Redden DT, Pietrobelli A, Allison DB. Waist circumference percentiles in nationally representative samples of African-American. European-American, and Mexican-American children and adolescents. J Pediatr 2004;145(4):439–44.
- [43] Findling RL, McNamara NK, Branicky LA, Schluchter MD, Lemon E, Blumer JL. A double-blind pilot study of risperidone in the treatment of conduct disorder. J Am Acad Child Adolesc Psychiatry 2000;39(4):509–16.
- [44] Findling RL. Dosing of atypical antipsychotics in children and adolescents. J Clin Psychiatry 2003;5(Suppl. 6):10–3.
- [45] Findling RL, Kusumakar V, Daneman D, Moshang T, De Smedt G, Binder C. Prolactin levels during long-term risperidone treatment in children and adolescents. J Clin Psychiatry 2003;6411:1362–9.

- [46] Findling RL, Robb A, Nyilas M, Forbes RA, Jin N, Ivanova S, et al. A multiplecenter, randomized, double-blind, placebo-controlled study of oral aripiprazole for treatment of adolescents with schizophrenia. Am J Psychiatry 2008;165:1432–41.
- [47] Findling RL, Nyilas M, Forbes RA, McQuade RD, Jin N, Iwamoto T, et al. Acute treatment of pediatric bipolar I disorder, manic or mixed episode, with aripiprazole: a randomized, double-blind, placebo-controlled study. J Clin Psychiatry 2009;70(10):1441–51.
- [48] Findling RL. Atypical antipsychotic treatment of disruptive behavior disorders in children and adolescents. J Clin Psychiatry 2008;69(Suppl. 4):9–14.
- [49] Findling RL, Johnson JL, McClellan J, Frazier JA, Vitiello B, Hamer RM, et al. Double-blind maintenance safety and effectiveness findings from the treatment of early-onset schizophrenia spectrum (TEOSS) study. J Am Acad Child Adolesc Psychiatry 2010;49(6):583–94.
- [50] Findling R, Cavus I, Pappadolulos E, Backinsky M, Schwartz J, Vanderburg D. A placebo-controlled trial to evaluate the efficacy and safety of flexibly dosed oral ziprasidone in adolescent subjects with schizophrenia. Schizophr Res 2010;117(2–3):437. doi: 10.1016/j.schres.2010.02.808.
- [51] Fleischhaker C, Heiser P, Hennighausen K, Herpertz-Dahlmann B, Holtkamp K, Mehler-Wex C, et al. Clinical drug monitoring in child and adolescent psychiatry: side effects of atypical neuroleptics. J Child Adolesc Psychopharmacol 2006;16(3):308–16.
- [52] Floris M, Lecompte D, De Nayer A, Mertens C, Mallet L, Vanden-driessche F, et al. Antipsychotica en seksuele stoornissen. Neuron 2001;7(2 Suppl.):1–9.
- [53] Food and Drug Administration. Pediatric indications. www.fda.gov/../CommitteesMeetingMaterials/Drugs/PsychopharmacologicDrugsAdvisoryCommittee/UCM164423.pdf; accessed 01 06 2010.
- [54] Fraguas D, Merchan-Naranjo J, Laita P, Perellada M, Moreno D, Ruiz-Sanco A, et al. Metabolic and hormonal side effects in children and adolescents treated with second-generation antipsychotics. J Clin Psychiatry 2008;69(7):1166–75.
- [55] Gothefors D, Adolfsson R, Attvall S, Erlinge D, Jarbin H, Lindstrom K et al. Swedish Clinical Guidelines Prevention and management of metabolic risk in patients with severe psychiatric disorders. Nord J Psychiatry 2010;64(5): 294–302.
- [56] Haas M, Delbello MP, Pandina G, Kushner S, Van Hove I, Augustyns I, et al. Risperidone for the treatment of acute mania in children and adolescents with bipolar disorder: a randomized, double-blind, placebo-controlled study. Bipolar Disord 2009;11(7):687–700.
- [57] Haas M, Eerdekens M, Kushner S, Singer J, Augustyns I, Quiroz J, et al. Efficacy, safety and tolerability of two dosing regimens in adolescent schizophrenia: double-blind study. Br J Psychiatry 2009;194(2):158–64.
- [58] Haas M, Unis AS, Armenteros J, Copenhaver MD, Quiroz JA, Kushner SF. A 6week, randomized, double-blind, placebo-controlled study of the efficacy and safety of risperidone in adolescents with schizophrenia. J Child Adolesc Psychopharmacol 2009;19(6):611–21.
- [59] Haddad PM, Wieck A. Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 2004;64(20):2291-314.
- [60] Hamner M. The effects of atypical antipsychotics on serum prolactin levels. Ann Clin Psychiatry 2002;14(3):163–73.
- [61] Hanssens L, De Hert M, Kalnicka D, van Winkel R, Wampers M, Van Eyck D, et al. Pharmacological treatment of severe dyslipidaemia in patients with schizophrenia. Int Clin Psychopharmacol 2007;22:43–9.
- [62] Haupt DW, Rosenblatt LC, Kim E, Baker RA, Whitehead R, Newcomer JW. Prevalence and predictors of lipid and glucose monitoring in commercially insured patients treated with second-generation antipsychotic agents. Am J Psychiatry 2009;166(3):345–53.
- [63] Hellings JA, Zarcone JR, Crandall K, Wallace D, Schroeder SR. Weight gain in a controlled study of risperidone in children, adolescents and adults with mental retardation and autism. J Child Adolesc Psychopharmacol 2001;11(3):229–38.
- [64] Hollander E, Wasserman S, Swanson EN, Chaplin W, Schapiro ML, Zagursky K, et al. A double-blind placebo-controlled pilot study of olanzapine in childhood/adolescent pervasive developmental disorder. J Child. Adolesc Psychophamacol 2006;16(5):541–8.
- [65] Horan MJ, Falkner B, Kimm SY, Loggie JM, Prineas RJ, Rosner B, et al. Report of the second task force on blood pressure control in children 1987. Pediatrics 1987;79(1):1–25.
- [66] Hsu C, Ried LD, Bengtson MA, Garman PM, McConkey JR, Rahnavard F. Metabolic monitoring in veterans with schizophrenia-related disorders and treated with second-generation antipsychotics: findings from a Veterans Affairs-based population. J Am Pharm Assoc 2008;48(3):393–400.
- [67] Jensen PS, Buitelaar J, Pandani GJ, Binder C, Haas M. Management of psychiatric disorders in children and adolescents with atypical antipsychotics: a systematic review of published clinical trials. Eur Child Adolesc Psychiatry 2007;16(2):104–20.
- [68] Jerell JM, Bacon J, Burgis JT, Menon S. Hyperprolactinemia-related adverse events associated with antipsychotic treatment in children and adolescents. J Adolesc Health 2009;45(1):70–6.
- [69] Kahn RS, Fleischhaker WW, Boter H, Davidson M, Vergouwe Y, Keet IP, et al. Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: an open randomized clinical trial. Lancet 2008;371:1085–97.
- [70] Kapetanovic S, Simpson GM. Review of antipsychotics in children and adolescents. Expert Opin Pharmacother 2006;7(14):1871–85.
- [71] Kinon BJ, Ahl J, Liu-Seifert H, Maguire GA. Improvement in hyperprolactinemia and reproductive comorbidities in patients with schizophrenia switched

from conventional antipsychotics or risperidone to olanzapine. Psychoneuroendocrinology 2006;31(5):77–588.

- [72] Klein DJ, Cottingham EM, Sorter M, Barton BA, Morrison JA. A randomized, double-blind, placebo-controlled trial of metformin treatment of weight gain associated with initiation of atypical antipsychotic therapy in children and adolescents. Am J Psychiatry 2006;163(12):2072–9.
- [73] Kryzhanovskaya L, Schulz SC, McDougle C, Frazier J, Dittmann R, Robertson-Plouch C, et al. Olanzapine versus placebo in adolescents with schizophrenia: a 6-week, randomized, double-blind, placebo-controlled trial. J Am Acad Child Adolesc Psychiatry 2009;48:60–70.
- [74] Kryzhanovskaya LA, Robertson-Plouch CK, Xu W, Carlson JL, Merida KM, Dittmann RW. The safety of olanzapine in adolescents with schizophrenia or bipolar I disorder: a pooled analysis of 4 clinical trials. J Clin Psychiatry 2009;70(2):247–58.
- [75] Kumra S, Oberstar JV, Sikich L, Findling RL, McClellan JM, Vinogradov S, et al. Efficacy and tolerability of second-generation antipsychotics in children and adolescents with schizophrenia. Schizophr Bull 2008;34(1):60–71.
- [76] Lauwers K, De Hert M. Glucose abnormalities in a non-psychotic patient treated with risperidone. J Am Acad Child Adolesc Psychiatry 2005;44: 629–30.
- [77] Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM. Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 2009;373(9657):31–41.
- [78] Leucht S, Komossa K, Rummel-Kluge C, CorvesF C., Hunger H, Schmid F, et al. A meta-analysis of head-to-head comparisons of second-generation antipsychotics in the treatment of schizophrenia. Am J Psychiatry 2008;166(2): 152–63.
- [79] Lindsay RL, Leone S, Aman MG. Discontinuation of risperidone and reversibility of weight gain in children with disruptive behavior disorders. Clin Pediatr 2004;43(5):437–44.
- [80] Lindström E, Levander S. Sertindole: efficacy and safety in schizophrenia. Expert Opin Pharmacother 2006;7(13):1825–34.
- [81] Luby J, Mrakotsky C, Stalets MM, Belden A, Heffelfinger A, Williams M, et al. Risperidone in preschool children with autistic spectrum disorders: an investigation of safety and efficacy. J Child Adolesc Psychopharmacol 2006;16(5):575–87.
- [82] Marcus RN, Owen R, Kamen L, Manos G, McQuade RD, Carson WH, et al. A placebo-controlled, fixed-dose study of aripiprazole in children and adolescents with irritability associated with autistic disorder. J Am Acad Child Adolesc Psychiatry 2009;48(11):1110–9.
- [83] Masi G, Mucci M, Pari C. Children with schizophrenia: clinical picture and pharmacological treatment. CNS Drugs 2006;20(10):841–66.
- [84] Maayan L, Vakhrusheva J, Correll CU. Effectiveness of medications used to attenuate antipsychotic-related weight gain and metabolic abnormalities: a systematic review and meta-analysis. Neuropsychopharmacology 2010;35(7):1520–30.
- [85] McCracken JT, McGough J, Shah B, Cronin P, Hong D, Aman MG, et al. Risperidone in children with autism and serious behavioral problems. N Engl J Med 2002;347(5):314–21.
- [86] McDougle CJ, Stigler KA, Erickson CA, Posey DJ. Atypical antipsychotics in children and adolescents with autistic and other pervasive developmental disorders. J Clin Psychiatry 2008;69(Suppl. 4):15–20.
- [87] McEvoy JP, Lieberman JA, Perkins DO, Hamer RM, Gu H, Lazarus A, et al. Efficacy and tolerability of olanzapine, quetiapine, and risperidone in the treatment of early psychosis: a randomized, double-blind 52-week comparison. Am J Psychiatry 2007;164(7):1050–60.
- [88] Meyer JM, Stahl SM. The metabolic syndrome and schizophrenia. Acta Psychiatr Scand 2009;119(1):4–14.
- [89] Morrato EH, Newcomer JW, Allen RR, Valuck R. Prevalence of baseline serum glucose and lipid testing in users of second-generation antipsychotic drugs: a retrospective, population-based study of Medicaid claims data. J Clin Psychiatry 2008;69(2):316–22.
- [90] Morrato EH, Newcomer JW, Kamat S, Baser O, Harnett J, Cuffel B. Metabolic screening after the American Diabetes Association's consensus statement on antipsychotic drugs and diabetes. Diabetes Care 2009;32(6):1037–42.
- [91] Morrato EH, Druss B, Hartung DM, Valuck RJ, Allen R, Campagna E, et al. Metabolic testing rates in 3 state Medicaid programs after FDA warnings and ADA/APA recommendations for second-generation antipsychotic drugs. Arch Gen psychiatry 2010;67(1):17–24.
- [92] Morrato EH, Nicol GE, Maahs D, Druss BG, Hartung DM, Valuck RJ, et al. Metabolic screening in children receiving antipsychotic drug treatment. Arch Pediatr Adolesc Med 2010;164(4):344–51.
- [93] Moreno C, Merchán-Naranjo J, Alvarez M, Baeza I, Alda JA, Martínez-Cantarero C, et al. Metabolic effects of second-generation antipsychotics in bipolar youth: comparison with other psychotic and nonpsychotic diagnoses. Bipolar Disord 2010;12(2):172–84.
- [94] Nagaraj R, Shinghi P, Malhi P. Risperidone in children with autism: randomized, placebo-controlled, double-blind study. J Child Neurol 2006;21(6):450–5.
- [95] Nasrallah HA, Meyer JM, Goff DC, McEvoy JP, David SM, Stroup TS, et al. Low rates of treatment for hypertension, dyslipidemia and diabetes in schizophrenia: data from the CATIE schizophrenia trial sample at baseline. Schizophr Res 2006;86(1–3):15–22.
- [96] Nasrallah HA. Atypical antipsychotic-induced metabolic side effects: insights from receptor-binding profiles. Mol Psychiatry 2008;13(1):27–35.
- [97] Newcomer JW, Nasrallah HA, Loebel AD. The atypical antipsychotic therapy and metabolic issues national survey. J Clin Psychopharmacol 2004;24:1–6.

- [98] Nicol G, Haupt D, Flavin K, Schweiger J, Hessler M, Hessler E, et al. Preliminary results of the MEAC study: metabolic effects of antipsychotics in children. Schizophr Bull 2009;35(Suppl. 1):32.
- [99] Nielsen J, Skadhede S, Correll CU. Antipsychotics associated with the development of type 2 diabetes in antipsychotic-naïve schizophrenia patients. Neuropsychopharmacology 2010. doi: 10.1038/npp.2010.78.
- [100] Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 2007;298:299–308.
- [101] Olfson M, Blanco C, Liu L, Moreno C, Laje G. National trends in the outpatient treatment of children and adolescents with antipsychotic drugs. Arch Gen Psychiatry 2006;63(6):679–85.
- [102] Olfson M, Crystal S, Huang C, Gerhard T. Trends in antipsychotic drug use by very young, privately insured children. J Am Acad Child Adolesc Psychiatry 2010;49(1):13–23.
- [103] Overbeek WA, de Vroede MA, Lahuis BE, Hillegers MH, de Graeff-Meeder ER. Antipsychotics and metabolic abnormalities in children and adolescents: a review of the literature and some recommendations. Tijdschr Psychiatr 2010;52(5):311–20.
- [104] Owen R, Sikich L, Marcus R, Corey-Lisle P, Manos G, McQuade RD, et al. Aripiprazole in the treatment of irritability in children and adolescents with autistic disorder. Pediatrics 2009;124:1533–40.
- [105] Panagiotopoulos C, Ronsley R, Elbe D, Davidson J, Smith DH. First do no harm: promoting an evidence-based approach to atypical antipsychotic use in children and adolescents. J Can Acad Child Adolesc Psychiatry 2010;19(2): 124–37.
- [106] Pappagallo M, Silva R. The effect of atypical antipsychotic agents on prolactin levels in children and adolescents. J Child Adolesc Psychopharmacol 2004;14(3):359–71.
- [107] Patel JK, Buckley PF, Woolson S, Hamer RM, McEvoy JP, Perkins DO, et al. Metabolic profiles of second-generation antipsychotics in early psychosis: Findings from the CAFE study. Schizophr Res 2009;111(1–3):9–16.
- [108] Rani F, Murray ML, Byrne PJ, Wong ICK. Epidemiologic features of antipsychotic prescribing to children and adolescents in primary care in the United Kingdom. Pediatrics 2008;121:1002–9.
- [109] Remschmidt K, Hennighausen K, Clement HW, Heiser P, Schulz E. Atypical neuroleptics in child and adolescent psychiatry. Eur Child Adolesc Psychiatry 2000;9(Suppl. 1):9–19.
- [110] Roke Y, van Harten PN, Boot AM, Buitelaar JK. Antipsychotic medication in children and adolescents: a descriptive review on the effects on prolactin level and associated side effects. J Child Adolesc Psychopharmacol 2009;19(4):403–14.
- [111] Sallee FR, Kurlan R, Goetz CG, Singer H, Scahill L, Law G, et al. Ziprasidone treatment of children and adolescents with Tourette's syndrome: a pilot study. J Am Acad Child Adolesc Psychiatry 2000;39(3):292–9.
- [112] Scahill L, Leckman JF, Schultz RT, Katsovich L, Peterson BS. A placebocontrolled trial of risperidone in Tourette syndrome. Neurology 2003;60 (7):1130–5.
- [113] Simon V, van Winkel R, De Hert M. Are weight gain and metabolic side effects of atypical antipsychotics dose dependent? A literature review. J Clin Psychiatry 2009;70(7):1041–50.
- [114] Shea S, Turgay A, Carroll A, Schulz M, Orlik H, Smith I, et al. Risperidone in the treatment of disruptive behavioral symptoms in children with autistic and other pervasive developmental disorders. Pediatrics 2004;114(5):e634–41.

- [115] Shin L, Bregman H, Breeze JL, Noyes N, Frazier JA. Metformin for weight control in pediatric patients on atypical antipsychotic medication. J Child Adolesc Psychopharmacol 2009;19(3):275–9.
- [116] Sikich L, Hamer RM, Bashford RA, Sheitman BB, Lieberman JA. A pilot study of risperidone, olanzapine and haloperidol in psychotic youth: a doubleblind, randomized, 8-week trial. Neuropsychopharmacology 2004;29(1): 133–45.
- [117] Sikich L, Frazier JA, McClellan J, Findling RL, Vitiello B, Ritz L, et al. Doubleblind comparison of first- and second-generation antipsychotics in earlyonset schizophrenia and schizo-affective disorder: findings from the treatment of early-onset schizophrenia spectrum disorders (TEOSS) study. Am J Psychiatry 2008;165(11):1420–31.
- [118] Snyder R, Turgay A, Aman M, Binder C, Fisman S, Carroll A. Effects of risperidone on conduct and disruptive behavior disorders in children with subaverage IQs. J Am Acad Child Adolesc Psychiatry 2002;41(9):1026–36.
- [119] Spina E, Zoccali R. Sertindole: pharmacological and clinical profile and role in the treatment of schizophrenia. Expert Opin Drug Metab Toxicol 2008;4(5):629–38.
- [120] Stigler KA, Potenza MN, Posey DJ, McDougle J. Weight gain associated with atypical antipsychotic use in children and adolescents. Paediatr Drugs 2004;6(1):33-44.
- [121] Swadi HS, Craig BJ, Pirwani NZ, Black VC, Buchan JC, Bobier CM. A trial of quetiapine compared with risperidone in the treatment of first onset psychosis among 15- to 18-year-old adolescents. Int Clin Psychopharmacol 2010;25(1):1–6.
- [122] Tarricone I, Gozzi BF, Serretti A, Grieco D, Berardi D. Weight gain in antipsychotic-naïve patients: a review and meta-analysis. Psychol Med 2010;40:187-200.
- [123] Tohen M, Kryzhanovskaya L, Carlson G, Delbello M, Wozniak J, Kowatch R, et al. Olanzapine versus placebo in the treatment of adolescents with bipolar mania. Am J Psychiatry 2007;164(10):1547–56.
- [124] Tramontina S, Zeni CP, Ketzer CR, Pheula GF, Narvaez J, Rohde LA. Aripiprazole in children and adolescents with bipolar disorder comorbid with attention-deficit/hyperactivity disorder: a pilot randomized clinical trial. J Clin Psychiatry 2009;70(5):756–64.
- [125] Vancampfort D, Knapen J, Probst M, van Winkel R, Deckx S, Maurissen K, et al. Considering a frame of reference for physical activity research related to the cardiometabolic risk profile in schizophrenia. Psychiatry Res 2010;177(3): 271–9.
- [126] Van Bellinghen M, De Troch C. Risperidone in the treatment of behavioral disturbances in children and adolescents with borderline intellectual functioning: a double-blind, placebo-controlled pilot trial. J Child Adolesc Psychopharmacol 2001;11(1):5–13.
- [127] Varley K, McClennan J. Implications of marked weight gain associated with atypical antipsychotic medications in children and adolescents. JAMA 2009;302(16):1811–2.
- [128] Vieweg WV, Sood AB, Pandurangi A, Silverman JJ. Newer antipsychotic drugs and obesity in children and adolescents. How should we assess drug-associated weight gain? Acta Psychiatr Scand 2005;111(3):177–84.
- [129] Weinstein LS, Xie T, Wang J, Chen M. The role of GNAS and other imprinted genes in the development of obesity. Int J Obes 2010;34(1):6–17.
- [130] Zimmet P, Alberti G, Kaufman F, Tajima N, Silink M, Arslanian S, et al. The metabolic syndrome in children and adolescents. Lancet 2007;369: 2059–61.